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I ABSTRACT

A numerical method for solving the electrochemical

transport equations subject to an arbitrary set of charge-

transfer boundary conditions is presented. The method is

based on a two-dimensional time-dependent formulation of

the equat.•ons derived from dilute solution theory. It is

applied to a study of corrosion and transport processes

in crack-like regions. The results show that the average

LI species fluxes normal to the metal-electrolyte interface,

the crack 3ength, and the crack aspect ratio are the most

Li important factors affecting the electrolyte composition.
Other factors, such as the crack shape, the form of the

boundary conditions, and the transport mode, also affect

the composition; but, these factors are of secondary im-

i t'portance.(
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I. INTRODUCTION

1 The transport of ions in electrolytic solutions piays

an important role in every electrochemical process. Just

how important is determined by several. factors, but elec-

trode geometry is the primary one. When the geometry is

simple, as in the electroplating of continuous steel strip,

ion transport is important only at high current densities.

When the electrode geometry is more complex, as in the plat-

ing of bolts and nuts and baby shoes, the distribution of

the plating current is strongly affected by the shape of the

part, and transport in the bulk electrolyte is important

even at low current densities. For decorative or ornamental
plating, the uniformity of the current distribution may be
unimportant; but for precision parts plated to obtain ape-

cific engineering properties, control of the plating thick-

ness is necessary to control both product quality and pro-

duction costs.

In this work we are concerned with ion transport as it

affects the electrochemical corrosion of metals. The geom-

etry considered is a surface discontinuity such as a pit,

crack, or crevice on an otherwise smooth e2ectrode surface.

The importance of this geometry in metal corrosion may be

seen by inspection of any bridge in Pittsburgh. The attack

is relatively mild and fairly uniform along the expanse of
the main stractural members, and concentrated around the

joints, brackets, and cover plates. The attack may be par-

ticularly severe around bolts and rivets. In general, any

point where two parts join, forming a crack or crevice, is a

ipoint of accelerated corrosive attack.

The rate of attack in a pit or crevice is often large

LI and may be difficult to control. The overall corrosion cur-
rent typically increases by more than an order of magnitude

Li
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at the onset of pitting corrosion [I].* Depending on pit

size and distribution, the current density in the pits them-

selves may increase by mere than two orders of magnitude.

Crevice corrosion may be associated with equally large cur-

rents. This is a major nuisance in polarization experiments,

since specimens must be mounted with extreme care to control

such corrosion and obtain unifcrm current densities [2]. I.
Why surface discontinuities guch as cracks increase the

corrosion rate is poorly understood. In part, this is due I
to not knowing the electrolyce composition in such a region.

Sampling the electrolyte in a crack poses some difficult ex- [
perimental problems, so most of the composition estimates

have been based on indirect observations. The work reported

by B. F. Brown, C. T. Fujii and E. P. Dahlberg [3] is a

notable exception. By the rapid freezing of specimens, they

obtained samples of the electrolyte in propagating stress

corrosion cracks tested in neutral salt solutions. They

found the pHi to be substantially less than that of the bulk

electrolyte for all of the metals tested.

While the rapid freezing technique is promising, the j
small vohume to 'he sampled coiistitutes a formidable obstacle

to the experimental study of solution chemistry in crack-like

regions. Size imposes no restrictions, however, on a theo-

retical study uf such problems. There are well-developed

theories dei3cribing both ion transport and electrochemical

reaction rates. The theories have been successfully applied

in a variety cf •2ectrochemical transport problems [4] and I
in the kinetic analysis of many charge-transfer reactions [5].

These facts suggest that the theory might be successfully

applied to th• study of solution chemistry in crack-like

regions. [

* Nuibers in brackets designate References.
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The theoretical study of corrosion and transport in

crack-like regions bas received little previous attez..+ion.

J. G. Hines [6] derived a formula for the steady-state

potential drop in a wedge-shaped crack assuming constant

} electrolyte resistivity and negligible transport by diffu-

sion. Somewhat moi.) sophisticated analyses have been pre-

sented by D. A. Vermilyea and C. S. Tedmin, Jr. [7] and by
W. D. France, Jr. and N. D. Greene, Jr. [8]. However, both

of these analyses are based or, highly simplified models of

electrolyte behavior.

T. R. Beck [9, 10] has presented a model of the elec-
!xI trochemistry of stress corrosion cracining in titanium alloys.

Beck's '1KT' model is the most ccmprehensive theoretical

Lianalysis published to date, The crack is treated as a one-

dimensional continutum, and the system is assumed to be at
steady state. Convective transport is neglected. The elec-

trolyte contains three ions, two singly-charged salt ions

and the hydrogen ion. The reactions at the metal-electro-

lyte interface are based on those observed experimentally.,

The transport equations are solved numerically using as

additional boundary data experimentally observed values of

current density and potential.

R. C. Alkire, E. A. Grens II, and C. W. Tobias [Pi]

recently presented an analysis which is potentially more

ljpowerful than the method used by Beck. Although the method
was developed to study porous electrodes, it is directly

1 ¶2 applicable to a pit-like region and with simple modification

U may be applied to a crack-like region. Like Beck's, theirs

is a one-dimunsional, quasi-Eteady state analysis. In their

formulation, however, there is no intrinsic limitation to
the number of ions and no boundary data other than reaction

I kinetics are required. The results presented to date are

fragmentary and the work iB continuing.

SAll of the studies above are based on a simplified

I•eo smlfe
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formulation of the transport equations, but they have been

extremely useful in helping to understand corrosion in

crack-like regions. In particular, the model developed by
Beck has been a powerful tool in developing an understanding

of the role of electrochemistry in stress corrosion cracking.

The successful application of electrochemical transport

theory t• the study of electrochemical phenomena, including I
those in crack-like regions, and the relative difficulty in-

volved in ti-.e experimental study of such phenomena provided

the motivation for the present work. The work consists of

two parts. In the first, the transport equations are pre- [
sented and the method developed for their solution is dis-

cussed. The method is based on the use of an Alternating-

Direction Implicit (ADI) technique to obtain the time-

dependent solution to a two-dimensional formulation of the

ion transport equations. The boundary data may be of quite
general form. Concerntration, concentration gradient, ion

flux, or charge-transfer boundary conditions may be used.

In the second part, the solution technique is employed

in a systematic analysis of the factors influencing solution

chemistry and ion transport in crack-like regions. These

results are then extended using a one-dimensional formula-

tion of the ion transport equations. Finally, certain as-

pects of stress corrosion cracking are discussed in the

perspective of the results obtained from 'he transport

analysis.

[
[
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[1II. TRANSPORT IN ELECTROLYTIC SOLUTIONS

LIIn this section the equations describing mass transport

in electrolytic solutions are presented. The equations are

based on the theory of dilute electrolytes. Several addi-

tional assumptions are then introduced; these .re discussed
and their implications considered. Boundary conditions are

then examined, and, because it plays a key role in the theory,

the electroneutrality equation is discussed in some detail.

The section concludes with a discussion of the behavior of

the field equations and boundary conditions under the class

of coordinate transformations used in the numerical calcu-
lations.

The Field Equations

The difference between an electrolyte and an ordinary

fi solution is that the dissolved species may exist as charged

Sparticles or ions rather than as uncharged atoms or mole-

cules. The solvent itself is electricallyneutral.. but has a

sufficiently large dielectric constant to make the existence

of the solute in the form of ions energetically favorable.

The solvent may be a solid, liquid, or gas. In this work,

however, it is assumed that the solvent is water.

The first element required to describe mass transport

is a relation between mass flux and the forces which induce
that flux. In this work, the flux equation based on the

theory of dilute electrolytes (the Nernst-Planck equation)

is used. In developing this equction it is assumed that the
total flux can b,' eypressed as the sum of the fluxes due to

migration in an electrostatic field, simple diffusion, and

Ssolvent convection. The equation is written

I L -. m ~ - D!VC1 + CLZ(

hiII
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where

S= mass flux of ith dissolved species (mole/cm2 -sec)

Z = valence or charge number of ith species (equiv/mole)

r•L= mobility of ith species (nrce-cm2/joule-sec)

Faraday's constant (96,520 coul/equiv)

concentration of ith species (mole/cm3 )

= electrostatic potential (volts) [
D; •diffusion coefficient of ith species (cme/sec)

= solvent velocity (cm/sec) I
V = 'del' operator = 0 [

and 1, . , and k are the unit vectors in the three rartesian

coordinate directions, x, y, and z.

Following the usual convention, the gradient of the

electrostatic potential is the negative of the electric

field strength. The mobility, m,, may be interpreted as the

average velocity, in meters per second, of the ith dissolved

species when acted on by a force of one newton per mole

regardless of the origin of chat force. The mobility and

diffusion coefficient are related by the generalized Nernst-

Einstein equation.

Di =rTLi + J(iRLtj (2)

where

S= universal ges constant (8.317 joule/mole-°K)

T = absolute temperature (OK)

Z = activity coefficient of ith species (dimensionless) [
I

I



d Each dissolved species also satisfies an equation of

continuity or mass conservation.

6C.B -v.Ji + G! *(3)

where

t hr time (sec)

G1= rate of generation of ith species (mole/cm3-sec)

The quantity Gi in equation (3) may be positive, nega-

tive, or zero. If the ith dissolved species enters a homo-

geneous chemical reaction as a product, Gi is positive; if

it enters as a reactant, Gi is negative; otherwise it is

S i] zero.

If a homogeneous reaction is to be included in the

analysis, a relation between the rates of generation of the

participating species and their concentrations must be found.

Consider, for example, a simple association-dissociation re-

action of the form

5 L + 'SM - (4)

Equaion (4) states that one mole of species L combines

i with one mole of species M to form one mole of species N.
The rates of generation of the participating species may be

* U expressed with sufficient accuracy by an equation of the form

U -GL -G M= G., krCM -C. (5)

U

I
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where

k,= forward rate constant (1/mole-cm3 -sec)

S= backward rate constant (1/cm3-se'i)

While the rate constants, ka and kd, hare the dimensions

indicated, the units are usually suppressed when there is no

ambiguity in their meaning. The forward and backward rate

constants are related to the equilibrium constant, Keq, by

the equation

N (6) IU

In this work the solvent is assumed to be electrically

neutral and non-conducting. (The small conductivity of pure I
water is due to the presence of hydrogen and hydroxyl ions

resulting from the equilibrium, H+ + OH- = H2 0.) Thus, every

homogeneous reaction must satisfy the requirement of charge

neutrality. In the reaction described by equation (4), for

example, the charge numbers of species L, M, and N satisfy
the equation

ZL + Z- =7 (7)L

If, for the moment, the convective term in the flux
equation is set equal to zero, one more equation is required

to complete the set of field equations. That equation is a

relation between the electrostatic potential and the charge

density. The most accurate physical description is provided
by Gauss' law. For a medium with a constant dielectric

strength, this may be written as

I,I
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11where
6 = dielectric constant (coul/volt-cm)

(7.083 x 10-12 for H2 0)

N= total number of dissolved species in the electrolyte

As an alternative, it may be assumed that the charge

density is everywhere zero. This assumption is a good

approximation for electrolytes that are sufficiently concen-

I Itrated. The condition of zero charge density or electro-
H neutrality is written

0 -(9)

It should be emphasized that either one of equations

(J (8) and (9) may be used but not both. The use of equation

(9) does not imply that the electrostatic potential satisfies

~i Laplace's equation (V21=- 0). In this work the electro-

neutrality equation is employed. The relative merits of this

formulation are considered below.

To the equations already discussed must be added those

describing the motion of the solvent. These are a contin-

uity equation, a momentum equation, and an equation of state.I The continuity equation for the solvent is

7. t , V )(u 0 (10)whe t

S~where

U



I
O = density of the solvent (gram/cm3 )

For a Newtonian fluid with constant viscosity, conser-

vation of momentum is expressed by the Navier-Stokes equation [

'D V -P + -7ý I

where £
P = hydrostatic pressure (dyne/cm )

= body force per unit volume (dyne/cm3 )I2 p = coefficient of viscosity (dyne-sec/cm2 )

bt =material derivative ( +?.V

There is no a priori constraint on the form of the body
force, -ý, in equation (11). Typically, however, one is

concerned with forces which are expressible as the gradient
of a potential, for example, the gravitational force. It

is convenient to separate the body force into two components:

that arising from a non-zero charge density in the solution,
and that due to all other causes. Thus, the body force may

be written as

_ 10~~2 1 1CV (12)

where [
body force from all sources other than charge

(dyne/cm3 )

The factor, 107, appearing in the equation results from L
the conversion of energy units from joules to ergs. Using

I.
£
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equation (8), equation (12) may also be written

S- + (13)

Examination of equations (11) and (13) reveals that the

jl motion of the solvent is coupled to the motion of the solute

species through the electrostatic body force. .Jhis coupling

is fundamental to the description of phenomena such as mass

transport through membranes and capillaries.

[3The equation of state is an expression relating the sol-

vent density to its temperature and pressure. For an aqueous

electrolyte at room temperature, subjected to small gradients

of temperature and pressure, the solvent may be assumed in-

compressible. Making this assumption, the equation of state

LI is
PC = )Oa = constant (14)

The concept of electrical current is closely related to

4the ideas of mass transport in electrolytic solutions. It

is frequently useful, and occasionally necessary, to express

mass fluxes in terms of current densities. Since a current

is simply a net flux of charge and the solvent is non-con-

ducting, the current density may be written as
LJ

H -i (15)

where

I = current density (amp/cm )

Equation (15) may be rewritten using equation (1) to

M,

!
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express the fluxes and equation (9) to eliminate the co-

efficient multiplying the solvent velocity. The result is I

The second term on the right is zero when the composi- I
tion of the electrolyte is identical at every point or when

the diffusion coefficients are all the same. In this case,

equation (16) reduces to Ohm's law. U'
I -- KV• (17)

where L
IC = solution conductivity (1/ohm-cm) = (c 2 .=rYLcLC)

From equations (3), (9), and (15), it may be shown that

v.1 = o

Equations (16) and (18) were obtained using the electro-

neutrality equation (eqn. 9). if equation (8) were used in-

stead, the equations would have a more complex form.

In the -4r.ier discussion of electroneutrality and L
Gauss' 7•.a, it was observed that one of the two should be

used, but not both. Thus the electrostatic potential does

not, in general, satisfy Laplace's equation. To emphasize
this further, equations (16) and (18) may be used to obtain L
the differential equation that the electrostatic potential

does satisfy.
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N rN+ N[(

Equations (1), (2), (3), (9), (10), (11), (13), and (14)

form the complete set of field equations describing mass
1] transport in electrolytic solutions. The assumptions made

in obtaining them do not seriously restrict their applica-

V I tion. In using the equations here, however, several addi-
tional assumptions have been made and these are examined be-

low. In some cases they have been dictated by necessity;

in others, they are made for the purposes of simplicity only.

It has been assumed that the solution is 'ideal' so the

individual ion activity coefficients are all unity. With

this assumption equation (2) reduces to

DriiRT (20)

The assumption implies that the ion diffusion coeffi-

cients are concentration independent. Also, it limits the

UL coupling between ions to that arising from the action of the

electrostatic potential. The difference between a diffusion

coefficient at extreme dilution and one at one mole per liter

is typically about twenty to thirty percent. By proper

selection of the concentration at which a diffusion coeffi-
cient is evaluated, the variation in a particular problem

can usually be made much less than this.

V Neglecting ion-ion interactions is more restrictive

than simply ignoring changes in the diffusion coefficients

L with concentration. But, there is very little published

data on the thermodynamic properties of other than single-

salt electrolytes, so there is no practical basis for
UL
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evaluating the necessary activity coefficients. If one

wanted to study such ion-ion interactions, the practical

difficulties notwithstanding, it would be preferable to use

a different formulation of the flux equation (see, for ex- I
ample, Reference 12).

Several. assumptions have been made to simplify the

equations describing the solvent velocity and to decouple

these equations from those describing ion transport. The

first is that the solvent velocity is slowly time•-varying. i
For an aqueous electrolyte, the rate at which an ion con-

-entration reaches steady state is two to three orders of

magnitude slower than the rate at which the solvent velocity
reaches steady state following a step change in a displace-

ment boundary condition. Since the time scale is determined

by the rate of diffusion, this assumption introduces no

serious error.

It is also assumed that the acceleration terms on the

left-hand side of the Navrier-Stokes equation are negligible [
with respect to the viscous terms on the right-band side.

Since the Reynolds number is less than 10-4 for all the

problems considered here, this assumption introduces no

serious error.

To decouple the equations governing the solvent motion

from those governing ion transport, it is Irssumed that the

body force in the Navier-Stokes equation is zero. The justi-

fication for this does not rest with the use of the elactro-

neutrality equation as opposed to Gauss' law. Even when

using the electroneutrality equation, equation (13) should

be used to express the body force.

The electrostatic body force increases as the current

density increases and as the electrolyte concentration de-

creases. It is negligible with respect to the viscous force

when the current density is sufficiently small and the

electrolyte concentration is sufficiently large. It is

'I
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difficult to establish a priori how small is 'sufficiently

small' or how large is 'sufficiently large'. Equation (13)

may be used after the fact, however, to estimate the magni-

tude of the electrostatic body force using the value of the

electrostatic potential from the solution of the ion trans-

port equations. This has been dor:e for the problems consid-

ered in this work. The electrostatic body forces are negli-

gible in every case.

Equation (11) may be rewritten using these aesumptions.

-VP +0 (21)

U The final simplification is to restrict attention to

planar problems. If x, y, and z are the three orthogonal
axes of a rectangular cartesian coordinate frame, and S is

any function of the independent coordinates, this assumption

iimay be written as

U T (22)

These are the assumptions made in this study. They are

typical of those Osually made and are less restrictive than

the assumptions invoked in most applications of the theory

fl (see, for example, Reference 4). We have discussed them

both to indicate the limitations of the theory used here and

to provide a wore complete view of the general theory than

was presented above [12].
With the above assumptions, the field equations may be

11written in more compact form. Using equations (14) and (22),

equation (10) becomes

i (23)
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Equation (23) is satisfied identically using a stream

function, q, defined by

6Y'. LP.
-t? c--- = r- (24)

Using equation (21) and the stream function defined by I
equation (24), it follows that H

4 (P (25)

VIP 0 (26) Ii

where P and pVA:P satisfy the Cauchy-Riemann conditions [

Combining equations (1) and (3) and using equations
(20) and (24), the concentration of each dissolved species

satisfies the equation

6t Z1D•CiV + F_1.ThVCI.Vý + 'DjV2 g VCj ido,(qjk + GCi (28) iI
where

= dimensionless potential (29)

(RT-,) = 25.6 millivolts at 250C [

The system of field equations is thus reduced to I

I
I
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I
equation (25), NV equations of the form of equation (28),

jJ and the electroneutrality equation (eqn. 9).

HBoundary Conditions

Consider a domain, g, lying in the x-y plane and

ij bounded by a curve, 0. Let r and t be the cartesian

unit normal end tangential vectors to the curve P, re-

SU spectively. Following the usual convention, the unit normal

is positive outward; the tangent vector is positive in the

[I fcounterclockwise direction. Within Z all the necessary
functions are assumed to be defined, continuous, and have

as many continuous derivatives as may be required.

It is convenient here and in later sections to use

subscript notbtion to denote both vector components and

partial differentiation. A subscript appearing alone in-

dicates a vector component. A subscript following a comma

indicates differentiation with respect to that variable.
For example, if V is a vector,

'i !

VX 1+ V4 (30-a)
ar.Ld

,-v + • - vy + tt (30-b)

With this notation in mind, consider the boundary con-

ditions for the stream function, 4. Within the domain, 4

Li satisfies the biharmonic equation. Since the equation is

fourth order, two constraints must be impoced at every bound-

L ary point. From the definition of 4 (eqn. 24), the most

natural boundary data areU
YA-- A1 (31)

II
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where

?f,= velocity component normal to the curve
A
Z4 = velocity component tangential to the curve

In practice, it is usually more convenient to use the

valuae of the stream function than its tangential derivative. [
Wher. Zr is known, the stream function is easily obtained by

integration. If s is the coordinate measured along 3, p

•5 S

- A 'ýý - . (32)
0 ~0E

where the integral is taken in the counterclockwise direc-

tion. Since the fluid velocity is independent of the ab-

solute value of T-, the integration constant qP(o) may be

assigned any convenient value.

In this work our primary concern is transport in a

crack-like region. In this case, the boundary coincides

over a portion of its length with a solid-liquid phase bound- E
ary and the fluid motion is induced by the motion of the

solid boundary. The velocity of the solid boundary is inde-

pendently specified and it is assumed that the fluid velocity

is, at every point on the solid-liquid boundary, the same as

that of the solid (the so-caJ.Led zero-slip condition).r

Along a line of symmetry, the tangential velocity is

usually unknown; if so, it is impossible to prescribe the [
normal derivative of the stream function. However, tlie tan-
gential velocity typically has an extreme value, so the spec-

ification of the first normal derivative may be replaced by

T(p~ ?- t n. 0 (33)

Io I
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For problems involving mass transport in a crack-like
-' region there is generally no precise definition of the fluid

velocity along that portion of the boundary corresponding to
the mouth of the crack. Here it is necessary to construct

ii approximate boundary conditions. This may be done using the
lowest order polynomial that satisfies the differential equa-
tion and is consistent with the other boundary data.

The boundary specification for the ion transport equa-

tions is more involved than that for the stream function.
For a solvent containing N dissolved species, equations (9)

and (28) constitute a system of (N + 1) equations in
s

(Ns + 1) unknowns. Ns of these are parabolic partial dif-
ferential equations (first order in time and second order in

space) and one is algebraic. Suppose that Nc (Nc N S)

species have non-zero charge numbers while (Ns - N c) have
Szero charge numbers. The (N - Nc) equations are then inde-

pendent; their solution reduces to the solution of (N - N c)
separate differential equations.

The remaining equations are coupled through the electro-
neutrality equation. While these have a linear form, they

are in general quasi-linear since the electrostatic potential
is itself a function of the concentrations.

Besides the coupling of the equations, the remaining

system of (NC + 1) equations is remarkable because of the

U character of the coupling. Since the electroneutrality equa-
tion is algebraic, the N concentrations are linearly depen-

Sdent. This means that exactly N [rather than (N0 + i)]

conditions must be imposed at each boundary point, and these
L must be such that one is effectively a boundary condition on

the electrostatic potential.

L With the above remarks in mind, consider some of the
forms which the boundary and initial conditions may assume.

The initial data must be of rather simple form. The concen-

Strations of (Nc - 1) of the ions may be arbitrarily specified

I
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as functions of the spatial coordinates. The concentration

of the remaining ion is then fixed by electroneutrality.

Because the differential equation for the electrostatic 3
potential exhibits no explicit time dependence (see eqn. 19),
the initial value of the potential is determined by the ini-

tittl values of the ion concentrations and the boundary con-
ditions.

The boundary conditions may take any one of a variety

of forms. However, all must satisfy the constraint imposed

by electroneutrality. Those easiest to use are the ones
that reduce to one of the classical forms for a second order

partial differential equation. [
If s is the coordinate measured along (, Dirichlet

boundary conditions are of the form

C- i s ^- ) (34-a)I

Swhere C i(s) and N.s) are arbitrary functions of the coordi-

_ K

nate s.

INeumann boundary conditions are of the form

V =ri =) (35-a)

VC,,- r. Z' LN5,0 (35-b)I 'I
I
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VM •(35-c)

where CI(s) and e*(s) are arbitrary functions of the coor-

I dinate s along(3.

While Dirichlet and Neumann boundary conditions are

El easy to apply, the normal derivative of • can seldom be
independently specified, and it is usually necessary to use

[i the normal flux. From equations (1), (20), and (29), the

flux of the ith species is

& = -•n~V4 - -I.-• +(36)

'1 Equation (36) may also be written

-1 J + (37)

Jwh = chemical flux = -F7jDiC• - hDjVCi (38-a)

= convective flux = + LfCi (38-b)

At a point on a moving boundary, the solvent velocity
is equal to the velocity of the solid by the so-called zero-
slip condition. There is generally no physical basis for
prescribing the normal component of the total flux at such

U a point. The normal component of the chemical flux, however,

depends on the rates of the reactions at the solid-electro-I U lyte interface and can usually be determined. Thus, the flux

specification has the form

XrJ--.= -(Zin + (39, )

where the J4(s) are arbitrary functions of the coordinate s

! 1
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measured along the boundary curve (3.
The flux specification expressed by equation (39) is

identical to a Neumann boundary condition for unchaurged

species. When the normal flux is zero, the flux specifica-

tion looks like a homogeneous linear boundary condition in I
concentration.

Charge-Transfer Boundary Conditions

One of the aims of this work has been to describe the

behavior of real physical systems. Among other things, this

requires the use of boundary conditions consistent with the
kinetics of electrochemical reactions. Boundary conditions

of the type described above do not satisfy this requirement.

In the pages that follow, the relationship between mass

flux and reaction current density is discussed. The rela-

tionship between the reaction current density and the field

variables is then examined. Finally, the way this infor-

mation is combined to construct boundary conditions is de-

scribed.

To make these ideas explicit, consider as an example a

simple redox reaction of the form

SA So + k e- (40) [

where L
reduced substance

= oxidized substance

k = electrode reaction valence = (Z0 - Zr) > 0 [
V-= an electron released into the solid electrode I

I
I
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I The reaction expressed by equation (40) canr take place

only at an electrode-electrolyte phase boundary, since the
jj electrons generated in the reaction must be removed from the

electrolyte. By convention, the equation is written with the

[ electrons (e-) on the right, and the constant k is a positive

integer. When the reaction goes to the right it is said to

flproceed in the anodic direction. When it goes to the left it

is said to proceed in the cathodic direction. Since k is

positive, the charge number of the oxidized species is
greater than that of the reduced epecies, and an anodic

current corresponds to a flow of positive charge from the

1] electrode into the electrolyte.

An example of such a reaction is the oxidation of the

jferrous ion to the ferric ion according to the reaction

L Fe++ - F + e (41)

It should be emphasized that the reactions described by equa-

tions (40) and (41) differ from ordinary chemical reactions

in requiring the transport of charge from one phase (the

u electrolyte) to another (the electrode) across a phase bound-
,• ary.SFor reactions more complex than those described by equa-

tions (40) and (41), it is convenient to write the reaction
equation in the more compact and general form

ZL JM K6 k -- 0 (42)

L where

U j= stoichiometric coefficient of ith species in

jth reaction

LI
11
!
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MN = either chemical formula of ith species or

molecular weight of ith species

kj = electrode reaction valence of jth reaction

S= total number of species entering into jth reaction I

Note that the stoichiometric coefficients, 6Lj, are less
than zero for the reduced species in the jth reaction and
greater than zero for the oxidized species. The stoichio-

metric coefficients are usually assigned integer values.
The electrode reaction valence satisfies the requirement

1: 6q L - -j o= (43)

When the reaction described by equation (40) procedes
at an electrode-electrolyte interface, the generation of one
mole of oxidized species, So, in the electrolyte is accom-

panied by the consumption of one mole of reduced species,
Sr, and the passage of k moles of electrons from the elec-
trolyte, through the electrode and into an external circuit.
The overall process may be viewed as consisting of three

simultaneous fluxes: a flux of oxidized species into the L
electrolyte, an equal flux of reduced species out of the
electrolyte, and a flux, k times greater, of positive charge
into the electrolyte. The charge flux is just an electrical

current. Since the mass fluxes are proportional to the
charge flux, it is convenient to use the reaction current to
describe the reaction rate. According to the convention

above, the current is positive (anodic) when the reaction
procedes to the right.

Thus, when the boundary 13 coincides with an electrode-

electrolyte phase boundary, the fluxes of the species in re-

action (40) mý:r be expressed as I
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=ý + (V/k) (44-a)

!ý li

J01 - Q k 3) (44-b)

LI where

I U I = reaction current density (amp/cm2)

The fluxes in equations (44) are measured relative to the

boundary, so the convective components do not appear in the
equations.

If more than one reaction occurs, the flux of each

species is the sum of the fluxes from all of the reactions.

Thus, from equation (42),

j'KL = ki 'J (45)

where

= reaction current density of jth reaction

Ni = total number of reactions involving the ith species

SU Equation (45) is the desired relation between mass flux

and the electrochemical reaction rates. It has the same form

as aquation (39). When the rates of all the reactions are

constant, the boundary conditions reduce to flux boundary

conditions.

STo complete the boundary specification, it is necessary

to express the reaction current density as a function of the

other field variables. Consider, as an example, the reaction
described by equation (40). The reaction current density may

Li
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be written I
I =, 10 - Ic (46) 1

where

.= anodic current density (amp/cm2 )

IL = cathodic current density (amp/cm2 )

In equation (46), the overall rate is expressed as the

difference between the forward and backward reaction ratoa.

Thesie may in turn ho ;,-Itten

0. ~ck(4~ .V/RTj (4-a)

(47k-b) i

where [

K,.= forward (anodic) rate constant (amp-cm/mole)

K.-= backward (cathodic) rate constant (amp-cm/mole) L
C,, = concentration of reduced species (mole/cm3 )

Co = concentration of oxidized species (mole/cm3 )

S= charge-transfer coefficient (,r) Ji . )

IM= electrostatic potential of solid metal

electrode (volt)

electrostatic potential in the electrolyte at
the phase boundary (volt)

Equations (47) are similar to those describing the for- [
ward and backward rates of a first-order, homogeneous chemi-

cal reaction. The forward rate is proportional to the con- I
centration of the reduced species (the reactant); the

I
II
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.11 backward rate is proportiorhal to the concentration of the

oxidized species (the product). The rate constants, Ka and

iiK., are intrinsically positive. Although usually written as

constants, they are actually functions of temperature and

Spressure. The exponential terms do not appear in the equa-

tions describing the rate of a homogeneous reaction. They
appear in equations (47) because the potential difference at
the electrode-electrolyte interface acts as a barrier to

charge transport. (For a detailed analysis of the rates of

charge-transfer reactions, see Reference 5.)
A more convenient expression for the reaction rate can

Li be obtained by rewriting equations (46) and (47). When re-

action (40) is at equilibrium,

and = I I O

Ui , (48)

1D I k o

K] where

Hsuperscript = value of parameter at equilibrium

AV°= equilibrium potential difference across
electrode-electrolyte interface

The rate constants in equation (48) may be eliminated

by introducing the standard electrode potential, E , The

standard electrode potential is defined as the equilibrium

Spotential Cifference, relative to the standard hydrogen
electrode, when the activity of each species entering the

U reaction is one. It was assumed above that the electrolyte
is an ideal solution. Invoking the same assumption here,
the activity of a species is one when its concentration is

Li
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one mole per liter. Thus, from equation (48),

=r c (49)

and

= + ( T (50)

Equation (50) shows how the equilibrium potential varies

with concentration. The standard equilibrium potential has

been tabulated for many charge-transfer reactions [13]. It

may be determined directly from electrochemical experiments

or by calculation from independently measured thermodynamic

data.

From equation (46) and the condition for equilibrium,

the anodic and cathodic current densities are equal at equi-

librium. This value of the current density is called the ex-

change current density and may be determined from either of

equations (47) and equation (48).

Iil- - KCo 0( (1 -nN) C

10 K KC (51)

where

0= exchange current density (amp/cm2 ) [

Using equations (49), (50), and (51), the reaction rate

expressed by equations (46) and (47) may be written in more X

compact form. [
- CO) F~--~Y~T1T (52)[

ITi

I
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I where

= - •-(53)

SEquation (52) is the form usually found in the litera-
ture. The quantity, 7, defined by equation (53) is called

t the charge-transfer overvoltage. It indicates the degree to
which the reaction departs from equilibrium. When the con-
centrations are fixed at their equilibrium values, the sign

of the current density is the sama as the sign of the charge-
transfer overvoltage. Thus, the current density is anodic
when the overvoltage is positive.

Two specializations of equation (52) frequently appear

LI in the electrochemical literature and should be mentioned.
When the concentrations of reacting species are everywhere

[] equal to their equilibrium values and the charge-transfer
coefficient, o, is equal to one-half, equation (52) becomes

•i! - Birth 07/Ri] (54)

The other special case occurs when the overvoltage is
L large. When the argument of the exponential terms in equa-

tion (52' is large with respect to unity, one of the two
terms is small with respect to the other. For example, when

has a large positive value, the second term can be ne-

glected and the current density is approximately

I•~Y I [ý k ×p k?/RT](5
L

Ii If, in addition, the concentration of the reduced species is
close to its equilibrium value, equation (55) may be written

S A + 0I0{o} (56)

II
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where

A Otk(57-a)

~k =+( rb to) (57-b)[

Equation (56) is the so-called Tafel polarization law.

When 7 is plotted as a function of log(I), the constants B

and A correspond to the slope and zero intercept of the curve

respectively. If the electrode reaction -valence, k, is

known, the kinetic constants C and I1, may be determined

from equations (57).

Fcr analytic work, the exchange current density defined

by equation (51) is inconvenient because its value depends [
on the choice of reference conditions. Since the standard

electrode potential is defined with unit a.ctivities of the I

reacting species, it is convenient to use the same conditions

to define a standard exchange current density. Thus, [
S - (i- -01 IC

Kal K 10 (58)

where

01 = standard exchange current density (amp-cm/mole) I

The units of the standard exchange current density are [
chosen for later dimensional clarity. As before, it is

assumed in equation (58) that the el.ectrolyte is an ideal [
solution.

Taking as reference conditions unit concentrations of

the oxidized and reduced species, and.introducing the dimen-

sionless potential from equation (29), equation (52) becomes

I - I e {Cexp[ak - CoeXp -k (59) 1
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where

- (60)

By analogy with the dimensionless'potential, • will be

called the dimensionless overvoltage. Note that a zero value

of the dimensionless overvoltage .,'-?sronds to zero current

only in the special case when the •uncen~rations of both the

oxidized and reduced species are equal to one mole per liter.

For the example considered, the redox reaction described

by equation (40), equations (44) and (59) constitute the de-

sired boundary specification. Since the electrode is assumed

to be a good conductor, c, is not a function of position but

may be a function of time. The values of CA, C,, and , ap-

pearing in equations (59) and (60) are those at the electrode-

electrolyte interface.

iL Thus, when the boundary (3 to the domain j coincides

with an electrode-electrolyte interface, and the redox reac-

tion described by equation (40) is the only charge-transfer

reaction occurring at that interface, the boundary specifi-

cation is

L-J-r J.nj J (61-a)

SJ•.l - 0 1 0 or (61-b)

ii~
where

Ux p F:xk 41 e~x PF)k (61-c)

Equations (61) are a straightforward extension of the[ flux boundary conditions discussed above. They are awkward

to handle in practice, since they are non-linear in the di-

mensionless potential. Tht other than convenience, therp is

I
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no limitation to their use.

To generalize these results, note that equation (45) is
the general relationship between mass flux and reaction cur-

rent density. If, for each reaction, the current density in

equation (45) can be expressed as a function of concentration
and potential, the boundary specification will be complete. I
It should be emphasized that, while equation (59) is typical
of those describing charge-transfer kinetics, equations of
this form do not always provide an adequate description of [
reaction kinetics. An example is the reaction discussed in
Appendix B. [
Electroneutrality

In the original presentation of the transport equations,

it was observed that Gauss' law is more accurate than the

electroneutrality equation. It was asserted that the elec-

troneutrality equation is approximately satisfied by elec-

trolytes which are sufficiently concentrated, bvt no evi-
dence was presented in support of that statement. The elec- I:
troneutrality equation is, nevertheless, employed throughout
this work. l

At that point, we had no basis for selecting one equa-

tion over the other. Here, having examined both the field

equations and boundary conditions, we are in a better posi-

tion to discuss the merits of using the electroneutrality
equation. L

By using the electroneutrality equation, the differen-

tial equation for the electrostatic potential is simplified
and reduced in order. Using equations (28) and (29) and
Gauss' law (eqn. 8), the differential equation for the di-

mensionless potential, •, is
4.

L
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bat 6 DV44 6v(vzý).curl.Pk) (62)

t• - pvl- - vP-vý -VQ

j] where

(63-a)

I I4

ED L (63-b)

i ~- EJ A-, -CL- (6:3-c)

IU

"Using equations (28) and (29) and the electroneutrality equa-

tion (eqn. 9), the differential equation for the dimension-

less potential is

P TV vP.v4 ÷ va 0 (64)

Equation (62) is a fourth-order, parabolic, partial

differential equation. Equation (64) is second order and
LI contains no explicit time dependence. Both equations look

linear; neither is.

Rather than discuss equations (62) and (64) in their

general forms, we will limit our attention to a special case

for which the forms are simplified but the essential features
are retained. Specifically, let

L
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i) D = D, all i = i,N

ii) = = O , all f (steady state) (65) 5
iii) = constant (zero solvent velocity)

Using these assumptions, equations (62) and (64) become

V*(ý,Vý) - = 0 (66)

V*(Zr7 ) 0 (67) [
where N[

Q , (ionic strength)£=I I

Using the same assumptions, equation (28) reduces to I

Z.,C;V1 J 0 1 L+(~g (68)

It has already been shown that N equations of the form I
s

of equation (68) and the electroneutrality equation consti-
tute a system of Ns equaticns in N unknowns. On the other
hand, N equations of the form of equation (68) and Gauss'

5 5
law comprise a system of (N + 1) equations in (N + 1) un-
knowns. The boundary specification which is complete when
using the electroneutrality equation is not complete when [
using Gauss' law.

This result is also reflected in equations (66) and

(67). Equation (66) is fourth-order in 4; equation (67)
is second-order. To obtain a solution to equation (66),
two constraints must be imposed at each boundary point.

II
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Equation (67) requires one.
Boundary conditions for the system of equations using

Gauss' law may assume various forms. As was done for the

system based on the electroneutrality equation, these may be
1 determined from a detailed analysis of the original system

of equations. The same result may be developed heuristically
from equations (66) and (67).

Tf the normal flux of each species is specified every-

where on the boundary, the normal current density is also
H specified (by eqn. 15). If, in addition, the ionic strength,

•, is constant, flux boundary conditions are equivalent to
specifying the normal derivative of 4 everywhere on the

boundary.

bounA boundary condition of this form is sufficient for
equation (67). Another is required for equation (66). One

possibility is suggested by Gauss' law; namely, specifying
the charge density in the electrolyte at every point on the

boundary.
For the system of equations including Gauss' law, Gther

conditions could be imposed and it is not necessary that they
be the same at every boundary point. Nevertheless, some-
thing equivalent to the condition above must be imposed in
addition to those used for the system based on the electro-
neutrality equation.

u For that portion of the boundary corresponding to an
electrode-electrolyte interface, this introduces a serious

problem. While the ion fluxes can be determined from the
rates of the charge-transfer reactions, the first normal de-
rivative of • is proportional to the charge density on the

surface of the electrode. There is published data on the
rates of many electrochemical reactions, but there are vir-

tually no data on surface charge density for solid metal
electrodes. Lacking such data, we would prefer not to use

I Gauss' law if there is some other justification for using
the electroneutrality equation.I

I
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Equations (66) and (67) differ by the appearance of a
biharmonic term in equation (66) missing from equation (67).

To estimate the importance of this term, consider the special

case when the ionic strength, 0 , is constant throughout the

electrolyte. In this case, equation (66) may be written

~v4j 0 (69)

where
r-.c (70)

The constant • is called the Debye length. When it is

small with respect to the characteristic dimensions of the
domain B (the electrolyte), the second term in the brackets

in equation (69) is small with respect to the first. The

biharmonic term in equation (66) can then be neglected, and Ii
the electroneutrality equation used to describe the charge

distribution in the electrolyte.

In Figure 1, the Debye length is plotted as a function

of ionic strength. It is less than 10-5 centimeters when
the ionic strength is greater than 2 x 10-5 equivalents

squared per mole liter. For a 1-1 aqueous electrolyte (e.g.

an aqueous sodium chloride solution), this corresponds to a

salt concentration of 10- moles per liter. The minimum di-

mensions of all the domains considered in this work are of L
the order of 10-3 to 10- centimeters. The ionic strengths

are typically of the order of 102 to 1.0 mole per liter. [
Under these conditions, the electroneutrality equation does,

in fact, represent a valid approximation to 4auss' law. [
The use of the electroneutrality equation thus simpli-

Because it is also an accurate approximation over a broad

I
I
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range of interest, it is possible to exploit these simplifi-
IIcations.

Coordinate Transformations

When solving a boundary value problem, it is often con-f venient to choose a coordinate frame so the boundary coin-
cides with a coordinate direction. For example, when the
boundary curve () is a circle, it is usually convenient to
transform the field equations and boundary conditions to
polar coordinates so the boundary coincides with a constant
value of the radial coordinate. The advantage gained in
simplifying the boundary conditions is offset in part by

L additional complexity in the field equations.
Under the ulass of coordinate transformations used here

Sthe field equations are particularly well-behaved. Consider
the coordinate systems (x,y) and (y,). We wish to trans-
form the field equations and boundary conditions from x-y
coordinates to E-7 coordinates in such a way that the do-
main 9 in the x-y coordinate frame is transformed onto the

L rectangle f in the y-? coordinate frame. It is assumed that
such a transformation exists, so we can write

U X (71-a)L-,"(71-b)

where the functions x and y are continuous, single-valued,

I and have as many continuous derivatives as may be required.
In addition, it is assumed that x and y satisfy the Cauchy-

HRiemann conditions,

Ii (72-a)

LJ
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Under such a transformation, the field equations

(egns. 28, 9, 25, and 26) aeseme the following fora irt the

S-7 coordinate frame:

ý-'Y( Ot -Zj~ThCVO\Yt,)) DIW'Ct - CJrY)±'Gi. (73)

o (74) [

F, I 4P + Fe+ FVW + -,V 0 (75)

vP== 0 (76) 1
i ,,whereI

w= unit vector in the positive S-direction (77.-a).-

unit vector in the positive 1-direction (77-b)

M- (77-c)

Ii (77-d.)

w4 6 4 + 4(77-e)

F r- (77-f) [
- + (77-0)

F1.= - 4( ,,Z (77-h) I
F, = 4 (77-J) I

F., •X' (77-k) 3
I
I
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I The operators in equations (77-c) through (77-f) are
defined by analogy to the operators in cartesian coordinates.
The function (, defined by equation (77-g), is called the

warping function and indicates the eztent to which a line-
element at a point in the x-y coordinate frame is stretched
or compressed by the transformation at the corresponding
point in the ý-? coordinate frame.

The electroneutrality equation (eqn. 74) is unaffected
by the transformation. Equation (76) is analogous to the

original equation. The conservation equation (eqn. 73)
differs from the original equation only by the appearance of

U !the warping function as a coefficient multiplier in the terms
not containing spatial derivatives. Only the biharmonic
equation (eqn. 75) is significantly affected by the coordi-
nate transformation.

The transformation of boundary conditions is straight-
forward. Any function of the coordinates x and y may be

written as a function of the coordinates ý and 7 using the
U transformation functions of equations (71). It should be

observed, however, that, for an equation expressing a vector

quantity as a function of the gradient of a scalar quantity
or the curl of a vector potential, the warping function ap-
pears in the transformed equation. Thus, when transformed to
the E-7 coordinate frame, the flux equation becomes

LY( LL D + V, 4- ~ " 4- C; .1 (78)

LI Similarly, equation (24) becomes

t Li - cur (7q)

"Ii
I
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Equations (73) through (79) may be used in any coordi-

nate frame, (c,), for which the transformation functions

satisfy the Cauchy-Riemann conditions (eqns. 72). The par-

ticular form of the transformation functions is, of course,

dictated by the shape of the domain . in the x-y coordinate Li

frame.

LI

lie

oH

U
U

it

it
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III. METHODS FOR SOLVING THE TRANSPORT EQUATIONS

ii In this section, some of the methods for solving the

3lectrtchemical. transport equations are discussed. Theii
numerical technique used in this work is outlined 'n the

next section. Here, consideration is limited to the system

jl consisting of Ns equations of the form of equation (28) and
the electroneutrality equation. It is assumed that Gi = 0

(for all i) and that the solvent velocity, Q', is indepen-

dently specified. For convenience, the equations are dis-

played below.

i_!i
-7 ZADQ 1V2 + 7A r - DiV2Ci -'rf (80-a)

L 0 (80-b)

In several cases the system of equations reduces to a
system of linear equations. For these cases solutions can

be obtained by classical methods [12].
U When the dimensionless potential is cr :-tant, equation

(80-a) becomes

Tt = DIV2(c -- VCi.z (81-a)

Equation (81-a) is the so-called convective-diffusion equa-
tion. Since the ion concentrations are coupled through the

electroneutrality equation, the solution set contains the

U solutions of (N - 1) linearly-independent differential equa-

tions.

SIf, in addition to the dimensionless potential, the
solvent velocity is zero, equation (80-a) reduwces to the

II equation describing transport by simple diffusion.

I
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C) J (81-b)

Once again, the solutions are coupled through the electro-

neutrality equation, and the solution set consists of j
(Ns - 1) linearly-independent solutions. Equations (81)

have been studied extensively. They can usually be solved I

by the method of separation of variables or by the use of

similarity transforms. A complete discussion of solution

techniques with application to specific boundary value

problems is containe in References [14] and [15].

Depending on the solvent velocity, one of equations

(81) can be used when the potential gradient is small. Ne-

glecting the potential introduces an error, but this can be

tested by geneiating solutions to the complete set of equa-

tions and determining the extent to which electroneutrality

's violated. If

•si <C 77 ..,r,(82)*

where the C. are the values obtained from one of equations
(81), the error is _igible. £.•

When the electrolyte composition is everywhere the same,• mI
equations (80) reduce to Laplace's equation for the dimren-

sionless potential.

-_ (83)

As is true for the diffusion equations, methods for solving

Laplace's equation are well documented. This equation has

beei, used in a wide variety of electrochemical problems. It

is accurate at shoit tizges in many time-dependent Lroblems

and at steady state in well-stirred electrolytes. i

I
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In some cases, equations (P0) reduce to a system of

linear equations which can be solved by classical methods.

The simplest and most important is the case of the binaryK electrolyte [12]. When Ns is two, equations (80) can be
S• writter

m, 6C --- Z,]:ICIV24$ + Z1D1VC 1'V¢ + D1,V2C,- _b.qj (84-a)

6CL

= ZLiV" + - LV'tCz - .'VC. (84-b)

tZ--, + Z2CZ 0 (84-c)

Multiplying equation (84-a) by r 2 , equation (84-b) by DI,

and adding

Sc +• C = L,,i -1).V2C, D J (85)

Substituting for C2 in equation (85) its value from equation

.- c) and rearranging,

!= _V2 c 1-?,.vc. (86)

where

Equation '86) is just the convective-diffusion equation

and may be solved by the technique discussed above. Note

that species 2 satisfies the same differential equation

(eqn. 86), and that Z = . After solving equation (86)

I
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for 0 1, C2 can be obtained directly from equation (84.-c).I

The dimensioniless potential can then be determined from

equation (84-a). However, a simpler expression is obtained [
by multiplying equation (84-a) by 9I and equation (84-b) by

Z,,. Adding the resulting equations and using equation (84-c)

to eliminate C2 yields r

c, VV4 + VC,. ÷ -+ 0 (7)"

While methods for solving Lap]ace's equation and the

diffusion equation are we!l documented, there is no general

procedure for solving the transpor4 equdtions (eqns. 80).

For problems involving dependence cn one spatial variable,
the method outlined in Appendix C can sometimes be used. -

The method is based on tresting the potential ý as an un-

known function in. the solution of equations (80-a). Using

these solutions and the electroneutrality equation, an in- " I

tegral equation is obtained for •. The form of the equation

varies from one problem to another but is typically non-

linear. The usefulness of the method depends on the effort

required to extract a solution from the integral equation.

No way has yet been found to extend the method to two or Al

three spatial variables. V

Approximate solution techniques are of two general Lo

types: approximate analytic methods and numerical methods.

Perturbation methods are the most powerful of the analytic

ones. These are based on the idea that a small change in one

of the field variables or boundary nonditions should cause L

only small changes in the solution. The equations for the

binary electrolyte (eqns. 86 and 87) provide the most satis-

factory basis for such methods. •"

In the simplest perturbation method, the concentrations

of the two principal ions are determined from equation (86).

Ii
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The concentrations of the minor species are determined from
equation (28), using the electrostatic potential obtaiL±c&

from equation (87). The electroneutrality equation is then

used to obtain an improved estimate of the potential. There

are, of course, more sophisticated methods and they may be

used iteratively to improve the accuracy of the approxima-

"tions.

Numerical methods have received increasing attention in

I • recent years. Much of the work has been based on some spe-

"cialization of the ion transport equations. For example,
the work reported in Reference [16] is based on the convec-

tive-diffusion equation. Such approximations can be extreme-
ly useful, but only that work including the effects of both

- idiffusion and migration is considered here.

The 'NKT' analysis dev loped by T. R. Beck [10] is

basically a one-dimensional, steady-state formulation of the
ion transport equations using a particular set of charge-

transfer boundary conditions. It is assumed that the solvent
velocity is zero and that the electrolyte contains three{ i charged species. The equations are integrated numerically
using a Runge-Kutta technique, and the boundary conditionsI: :are satisfied by trial and error.

R. C. Alkire, E. A. Grens II, and C. W. Tobias [il]

recently presented a more sophisticated treatment of one-

dimensional transport. Developed for a study of porous
electrodes, their analysis is based on a quasi-steady state

formulation of the transport equations in which the solvent
velocity is determined by the rate of dissolution of the

metal. electrode. The equations are linearized and then cast
in finite difference form. The resulting system of algebraic

equations is solved numerically. An iterative procedure is

'used to simultaneously satisfy both the field equations and
boundary conditions.

j There has been no report of methods for problems in two

!
I
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or three spatial variables. The methods iported in Refer-

ences [101 and [11] could be generalized to electrolytes [
containing more than three charged species and, without
much difficulty, to include explicit time-dependence. It
4s doubtful, however, that the method used in Reference [10]
can be extended to problems in two or three spatial vari-

ables.

L

1-i
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IV. COMPUTER PROGRAM DEVELOPED "TOR THIS STUDY

Several specific goals were established to guide the

design of the computer program. The primary goal was that

: the program be capable of generating time-dependent solu-
tions to the electrochemical transport equations, using an

ii arbitrary set of charge-transfer boundary conditions.

Secondly, it was desired that the program be flexible and

have a broad applicability. While the immediate aim of this
study was to examine transport in crack-like regions, the
program is designed to solve problems in two spatial vari-

ables rather than one. Also, the program can be easily spe-

cialized to solvce Laplace's equation or the convective-

diffusion equation by the input of appropriate control char-

acters.

Basically, the program calculates three functions: theL•
stream function, the dimensionless electrostatic potential,
and the concentration of each dissolved species. In every

case the approach is the same. The controlling differential
equation is replaced by an equivalent difference equation at

a number of preselected points. The resulting system of

linear algebraic equations is then solved by Gaussian elim-

L] ination. Additional. subroutines are required to perform
service an'. control functions. The most important of these

I are the subroutines which establish the size and shape of the
physical region and those in which boundary conditions are

"calculated and applied.

The problem to be solved is defined by the input data
under the control of the executive portion of the program.

First, the initial concentrations and the transport proper-

ties of the dissolved species are specified. Up to ten

species may be included in a single problem. The type of

problem to be run (simple diffusion, convective diffusion,

or electrochemical transport) is then determined and the

!;
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form of the boundary conditions is establiehed. Finally,

the size and shape of the physical domain are fixed.

The physical domain may be hyperbolic, elliptic, pie-

shaped, or rectangular. Other shapes are possible but, as r
the program is now written, the transformation functions are

limited to those listed. The way the domains transform to a

rectangle is indicaLed in Fiure 2. The numbered points

transform to the numbered corners of the rectangle, and the

lines connecting them transform to straight lines. The size L
of the physical domain is determined by two characteristic

dimensions, the length and width. The way these are measured f
is also rhown in Figure 2.

One finite ddzference grid is used for all the calcula-

tions. The grid spacing is uniform in each of the directions

Sand 7. The maximum grid size which may be used is 11 by

41. As an example, the grid for a hyperbolic domain is shown

in Figure 3 in both the physical coordinates and the trans-

formed coordinates. Note that ths spacings in the ý- and L
7-directions are uniform but not equal.

All quantities related to the motio!.. r•f the solvent are V
derived from the stream function. The stream function it-

self is calculated using a straightforward finite-difference

analogue to equation (75). The resulting system of alge-

braic equations is solved by Gaussian elimination with back

substitution to provide error control. The solvent velocity L
at each grid point is determined from the finite-difference

analogue to equation (79). L
The pressure at any point (•,) in the solvent can be

determined by i3';egration of equation (21). If ' is any con-

venient curve connecting the two points (0,0) and ( ()

then L

S1I

'- • = (•.• + r •-,i • '.•'i• .:,(88

]•V•,,,o), ' • " ..
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The pressure is calculated at points along the crack center-
line according to equation (88). The appropriate derivatives

I' are replaced by their finite-difference approximations and
the integration is performed numerically using the trape-
zoidal rule.

From equations (73) and (74), the differential equation

for the dimensionless potential, ý, in terms of the trans-
formed (%,7)coordinates is

Lz 1,(cZ ) -e-- o (89)

The potential is calculated using a straightforward finite-

.1difference analogue to equation (89) at each grid point.
The resulting system of Algebraic equations is solved by
Gaussian elimination.

Since there is no explicit time dependence in equation
(89), the potential is established instantaneously. For
problems in electrochemical transport, this initial value
must be calculated before attempting to calculate ion con-
centrations at an advanced time. When the electrolyte is

initially homogeneous, equation (89) reduces to Laplace's

equation.
When charge-transfer boundary conditions are used, the

initial estimate of the boundary conditions is generally in
error. In this case it is necessary to repeat the calcula-

'I >tion of the potential, using the previous value to obtain an
improved estimate of the potential difference across the
electrode-electrolyte interface. Four to six such iterations
are usually sufficient to reduce the error everywhere to less
than one part in ten-thousand.

S2 At advanced times, the initial estimates of concentra-
tions and potential all contain errors regardless of the

form of the boundary conditions. Then it is necessary to
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employ an iterative procedure involving all the field equa-

tions and, in some cases, the boundary conditions. This [
procedure is discussed more fully after first discussing the

method used to advance the calculation of concentration in

time.

Computation of the ion concentrations at an. advanced

point in time is carried out iii two stages. The conceytra-

tion of each species is calculated using a finite-difference

analogue to equation (73). The electroneutrality equation

(eqn. 74) is then used to modify these values and obtain im-

proved concentration estimates.

Initial estimates of the ion concentrations at a new
point in time are obtained using an ADI (Alternating-Direc- H
tion Implicit) technique, A techlnique of this form was

selected because, un!ike forward-difference analogues to

equation (73), such techniques are unconditionally stable.*

There is no limit to the size of the time step beyond the

practical limit required to control truncation error. In

addition, API techniques are relatively fast as compared to

other stable finite-difference approximations, e.g., back-

ward-difference methods.

When using an ADI technique with an equation in two or

three spatial variables, the problem is decomposed into two

or three problems, each one of which exhibits implicit de- -
pendence on only one spatial variable. In the present case

the differential equation depends on the spatial variables,

Sand `. The finite-difference analogue to this equation

consji-ts of two parabolic difference equations. One carries

an implicit deperdence in the C,-di rection, the other in the

Stability in this contex' riýfers to the fact that small
errors due to truncat'. n r, ;.oundoff do not propagate,
but are attenur.ted -" .'ulatio. is carried further in
time.

I
I



-51-

I,-direction. In operation, the equations for the p-direction

are solved first; then the equations for the '-direction are

solved. This procedure is repeated at succeeding time steps;
hence the name Alternating-Direction Implicit. At each stage

the coefficient matrix for the system of algebraic equations
S• is tri-diagonal.

A more detailed discussion of the finite-difference

analogue used in the solution of equatiori (73) may bp found

in Appendix A. A comprehensive review of numerical methods

for the solution of parabolic differential equations, in-

cluding ADI techniques, is presented in Reference f17].
U In earlier versions of the program the electroneintral-

ity equation was used only to generate an equation and bound-

ary conditions for the electrostatic potential. It was not

used explicitly in the program. Although several different

methods were tried, none were satisfactory: all resulted in

static potential. While the behavior differed from one

p method to another, the oscillations were always accompanied

by oscillations in the ion concentrations and systematic

deviations from electroneutrality.

-~ In the present program, oscillations of the icn concen-

UJ trations and electrostatic potential have been brought under

control by explicit use of the electroneutrality equation.

The method used is redundant. The concentrations of indi-

vidual species are initially treated as being independent,

and eecn concentration is calculated using the ADI technique
discussed above. This yields one ccncen oration estimate. A

second estimate is obtained using the electroneutrality equa-

tion and the first concentration estimates for all the other

charged species. These estimates are then combined to yield

an improved estimate.

In a typical problem, the concertration of a particular

ion may be several orders of magnitude less than the total

1b1tetoa
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ion concentration. For this reason it is necessary to weight

the two concentration estimates rather than take a simple

average. For each ion a weighting function, gi' is computed

according to the formula

NI,

i k/( ) (90)

where

cy = weighting function for ith charged species •

K = estimate of the concentration of the ith speciesj f
at the kth grid point obtained using the ADI

technique !
N= total number of grid points

N= total number of charged species

The concentration at each point is then determined H
according to the formula "

ci= ( i ) C'. + cS ,i k (91)

Cwe = 'best' estimate of concentration of ith species

at the kth grid point

S=-'.. ZJC2i , estimate of the concentrationzii
of the ith species at the kth

grid point based on the elec-

troneutrality equation.

I
I
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The precision of this method is quite good. The error,

C•, in satisfying the electroneutrality equation may be de-
fined as

Mc

eMux {h, 5 k=,, (92)

that is, the maximum value of the ratio at any grid point

within the electrolyte. On a computer carrying the equiva-

lent of eight decimal digits in single precision arithmetic,
S' 

1 0 - t
no value of 6,, greater than 5 x has been observed.

This is the same magnitude as the roundoff error in the cal-

culation of 6
When the concentrations, C.(t•), and the dimensionless

"potential, 4(+0 ) are specified at a point in time, t,,, the

calculations at a new point in time, (t+ LI,), are carried

out as follows. First, estimates of the concentrations,

CL(to+ t.), are calculated using the value of the potential,

.(t 0 ), to approximate its value at the intermediate time,

S(t0+½t). These estimates, CL(tt,-' &), are then used to

estimate the potential, (t•+ .i, ), at the new time. When

necessary, as when charge-transfer boundary conditions are

"used, the estimates of quantities at (t, ,41 ) are then used

to revise the boundary conditions. This sequence is repeated

three or four times as may be required to reduce the error to

the desired level. In each such sequence, the latest esti-

mate of the potential at the new time and the value at the
previous time are used to estimate 4(to•-*•,.) in the compu-

tation of the concentrations, OL(i,±L\t). If more than four

such iterations are required it is usually preferable to re-

duce the size of the time step.
In Appendix A, it is shown that the ADI method is second-

i •[order correct in both time and space when the dimension-less

potential is evaluated at the intermediate point in time,

I
I!
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( to+÷•tt). Because c is not specified a priori, iteration
is required to retain this second-order iL'-rectness. The
Iterative piocedure is also effective in controlling other
errors of uncertain magnitude. When, for example, charge-

transfer boundary conditions are used, the boundary condi- I
tions at the new time are not known at the beginning of the
time step. Unless the solution technique leads to simul-
taneous convergence of both the field variables and the
boundary conditions, the theoretical accuracy achievable

using the ADI method cannot be realized.
Boundary conditions for the transport equations are

imposed by straightforward application of the principles
disciissed in Section !I. When charge-transfer boundary

conditions are used, however, the procedure is somewhat
involved and this case deserves some explanation.

For each charge-transfer reaction a kinetic equation,
such as equation (59), must be obtained and includea in the
program. Storage capacity has been set aside to permit the

use of up to nine suCh equations. The current density is
calculated for each reaction and for as many boundary points
as may be desired. The calculation is always based on the
best estimates of the concentrations, CL(to+tst ), and poten-

tial, V( t,+ &t ) at the advanced point in time available at

the time of the calculation.
The potential of the metal (electrode) may be indepen-

dently specified. It may be held constant or permitted to
vary with time. As the program is now written, however, it

is not possible to impose a constant current conditior on
the electrode (corresponding, for example, to a freely
corroding metal).

The next step is to compute the normal flux for each
species at each boundary point. The computation is performed

according to equation (45) using tne values of the current

density just calculated.
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Finally, the normal dirivative of the dimensionless

potential, *n, is calculated at each boundary point accord-
ing to the equation

Mt =-j H ITOT + V,) (93)

Ii
wher = normal derivative of 4 at a point on the boundary

II 'TOTu --E Z D1.C1

and where the quantities I~ Tv U, and V are all evaluated
Sat points on the boundary.

The current density, IT , is taken as the sum of the

partial current densities calculated earlier. The calcula-U tion is always based on the best estimates of the concentra-
tions, CL( t4 At ) at the advanced point in time.

The estimates of the normal fluxes and the normal de-

rivative of the dimensionless potential are used with the
finite-difference analogue to the flux equation to construct

U the boundary conditions for each species. As mentioned a-
bove, all these estimates contain errors depending on theU stage of the computation. This method of constructing

boundary conditions has other drawbacks which are discussed
U at the close of this section.

The printed output includes ccordinate data, data rele-
vant to the solvent velocity, and transport data. The (t-?)

and (x-y) ccordinates are calculated and printed for each
grid point. The stream function and its first derivatives
in. the ý- and 7-directions are also printed. The val-ne of

I
I
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the solvent velocity at each grid point is presenteL in two

formats. In one the x- and y-components of the velocity are

printed; in the other the magnitude and direction of action
of the velocity vector are presented. The transport data are
printed at time zero and at the end of each time step. These
data include the value of the dimensionless potential and the

values of the concentratione at each grid point. The parti.al
current density for 9ach reaction is printed for every bound-
ary point lying on the solid-electrolyte phase boundary.
Finally, the x- and y-components of the total current density

are printed. I
The program has been run on a Univac Corporation Model

1108 computer. The running time depends on the number of

dissolved species, the mode of transport, and the number of
time steps desired. For a simple diffusion problem with one

dissolved species and charge-transfer boundary conditions,
two to three seconds of computation time are required for

each time step when using four iterations per time step.
For an electrochemical transport problem with three dissolved
species and constant lIux boundary conditions, the computa-
tion time is about fifteen seconds per time step, again using

four iterations per time step. More than half this time is
required for the computation of the electrostatic potential. U
The total running time for a wide variety of problems is

typically between five and thirty minutes.
Although the program has been successfully employed in

the solution of a variety of transport problems, it has two [
important limitations. The method used to coLrtruct and

apply boundary conditions limits the capability of the pro-

gram. In particular, difficulties are encountered in prob-
lems involving either diffusion-limited partial current den-

sities or extremely large total current densities. These

limitations may be overcome by changes in the subroutine
used to compute the partial current densities. That is,

I
I
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rather than treating the partial current density as a con-
[ stant, it might be treated as a linear function of both con-

centration and potential, where the linear approximation is
I made about the current values of the field variables.

Another limitation derives from the use of the currentfl equation to compute A, the normal derivative of the dimen-
sionless potential. This results in a coupling between
errors in the estimates of 4, and the concentrations. In
electrochemical transpcrt problems this introduces an insta-

fJ bility which can be controlled only by controlling the size
of the time step. While this method is successful, it is
undesirable because it limits full exploitation of the ADI

technique. It is felt that th.Ji limitation can be overcome
by using the sum, ,ZiJL/D , rather than the current equa-

LI tion, for calculating ,r.

Li

U
Ii
I
I
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V. RESULTS

Tne results presented in this section form the major I
part of an effort to deelop a systematic and coherent view

of the factors affecting solution chemistry and ion trans- I
port in crack-like regions. The results are limited to the

behavior of an electrolyte in a pre-existent notch or crack 3
on an otherwise smooth electrode surface. For the sake of
clarity and simplicity, attention is focused on a single I
reaction and it is assumed that no homogeneous chemical re-

action occurs in the electrolyte.

The reaction chosen for study is an oxide-film forma-

tion reaction. Such reactions play an iaportant role in

virtually all forms of metal corrosion. The rate of this U
kind of reaction cannot be adequately described by a kinetic

equation of the form of equation (59). Under suitable con-
strainto, however, behavior similar to that expressed by

equation (59) may bc observed (see Appendix B).

It is assumed that the oxide is formed by the reaction

U
M + 2,HzO MOZ + '4H+ + Z.e- (94)

For consistency and completeness it is necessary to include

oxide formation by direct reaction with the electrolyte.

Such a reaction is represented by

MO +O + -I MO0 + ZH• (95) U

This reaction does not require the transport of electrons U

through the oxide film. The reaction procedes to the right

or left depending only on the concentrations3 of the dissolved [

II
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species. The reaction rate is independent of the electrode

potential.
The metal oxide is asaumed to have zero electronic con-

ductivity. All current passing through the film is conducted
by the migration of ions or vacancies. As a consequence,

no redox reaction can occur in the system while the oxide

film is intact. Thus, equations (94) and (95) represent the

complete set of possible reactions occurring at the oxide-

HJ' covered metal surface. This assumption provides an accurate
physical description of the oxides of titanium and aluminum.

L The rate of rea'.tion (94) can be expressed as

[1 ~ ~ii I&e~xpt - exp[ 1} (96)

where

8L4= • n.- - -(97)

and where

wro = exchange current density (amp/cm2 )

0( = high field conduction coefficient (cm)

b = oxide film thickness (cm)

ýr = dimensionless potential of metal electrode

= dimensionless potential of electrolyte at

U metal-electrolyte interface

€; = Flade potentiai (dimensionless equilibrium

Ii potential of reaction 94)

= surface overpotential

I
I
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The Flade potential, E,, is taken as the equilibrium

potential of reaction (94). Thus, E,. is a function of the

hydrcogn ion concentration. It is easily shown that

6F + IriO÷ LH+1} (98) [1

where [
E• = standard dimensionless equilibrium potential

of reaction (94)

[H'] = hydrogen ion concentration (mole/cm3 )

The surface overpotential, 7s, is determined by the rate

of reaction (95). It may be determined from the equation

z ~ + 1~ (910

where U
= exchange current density for anodic partial

electrode reaction for reaction 95 (amp/cm2) U

Izo - eychange current density for cathodic partial

electrode reaction for reaction 95 (amp/cm2 ) U

[U] = concentration of species U (mole/cm3 )

The equilibrium concentrations, [MOo ] and [HI] in
0 0'

equation (99) can be determined from the solubilitý prcduct [
of the hydrated oxide or from the free energy of formation

of the oxide according to reaction (95) [18].

The kinetic parameters, I10 and 0, appearing in equa-
tions (96) and (97) have been evaluated from data reported g

I
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I fcr titanium by H. A. Johansen and co-workers [19]. 11 has

been taken as 1.0 x 0-12amps per square centimeter and (3
as 16 x IO- 8 centimeters. The standard Flade potential, 0,

has been taken as the standard equilibrium po±qntial for the

formation of hydrated titenium dioxide by the reaction of

titanium with water. The value reported by W. M. Latimer

[13] is -37.1 (-0.95 volts S.H.E. at 25 0C). The equilibrium

concentrations in equation (99) have been evaluated from data

fj_ reported by M. Pourbaix [18] for the formation of the hy--

drated form of titanium dioxide by the reaction of hydrogen

i_! and titanyl ions. The values are:

[Ht] = 2[M07] = 7.57 x 10-3 moles per cubic centimeter.

A detailed study of the rate of reaction (95), based on

the equations developed in Appendix B, indicates that the
rate is negligible with respect to the rate of reaction (94)

when the solution pH is greater than minus one. For this

reason and also to standardize the iinfluence of the MO +

ions, the concen*ration of MO++ has been fixed at 10-9 moles

Li per cubic centimeter and the rate of reaction (95) has been

set equal to zero for the problems in this section. To de-

termine 7., it is still necessary to evaluate the constants
I2o and I 3o* There are no data in the literature from which

to evaluate these exchange current densities. The values

10-6 and 10-4 amps per square centimeter have been selected

as being reasonable.

When the rate of reaction (95) is negligible with re-
spect to the rate cf reaction (94), the rate of oxide film

Ii growth may be written as

= (/ 4p,_, (100)

I!
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where I
b = time rate of change of the film thickness,%

(cm/sec)

w = molecular weight of the oxide (gram/mole) i
p = mass density of the oxide (gram/cm3 )

S= Faraday's constant (coul/equiv) I
The parameters W and p have been evaluated from the chemi-

cal formula and density of titanium dioxide. I

The transport properties summarized below are based on

data contained in References [20], [21], and [22]. None of

the references is complete; the data reported are from

measurements made in binary electrolytes. The values below

are based on the reported values at infinite dilution. At

concentrations of 0.1 mole per liter, ionic mobilities are
typically about twenty percent less than at infinite dilu-

tion. [
D H•= 9.00 x 10-5 (cm 2 /sec)

DCI- = 2.00 x 10-5 (cm 2 /sec)

DNa+ 1.33 x 10-5 (cm2 /se_)

Reference Problem [

At any point in time, the electrolyte composition in a

crack-like region is determined by three factors: the crack

size and shape, the boundary and initial conditions, and the

transport mode. Each of these is examined below using re- [
sults obtained numerically. To facilitate oomparison of the

results, ws begin with a problem that is relatively simple,

I
I
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but illustrates the general characteristics of transport in
Slcrack-like regions. It is a problem of transport by simple

diffusion under constant flux boundary conditions in a hy-

perbolic crack.
In this problem, one ion is considered; the effects of

migration and convection are ignored, The ion is the hydro-

Li gen ion and, from the values listed above, its diffusion co-
efficient is 9 x 10-5 centimeters squared per second. The

governing cifferential equation is the diffusion equation,
recovered fr'o equation (73) by setting the potential, ve-

ii locity, and generation rate equal to zero.
It is assumed that the electrolyte is initially homo-

geneous and the composition of the bulk electrolyte does not

change with time. The hydrogen ion concentration at time
zero and at pnints along the crack mouth is 10-7 moles per

|] liter (pH = !j. Along the crack walls, the normal flux is
constant and equal to 3.25 x 10-9 moles per squ..are centi-

U meter. This value is determined from the rate of reaction
(94), the oxide-film formation reaction, using equation (96)

with c, and c) equal to zero, a film thickness of fifty ang-
stroms, and a hydrogen ion concentration of 10 moles per

I liter. The normal flux is equivalent to a current density

of 314 microampa per square centimeter.

The crack is the hyperbolic crack shown in Figure 6.

It is 0.20 centimeters-long and 0.02 centimeters-wide.
The results are summarized in Figures 4 and 5. In Fig-

jjure 4, the hydrogen ion concentration at the crack tip is
shown as a function of time. The concentration is expressed
as a pH, the negative common logarithm of the hydrogen ion
concentration in mcles per liter. The pH falls quite rapid-

Sly. From an initial value of seven, it is less than three

within one second. In ten secono, it has a value less than

one pH unit larger than its final or steady state value.

The steady state is reached in approximately 700 seconds, or

I
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about twelve minutes and the crack-tip pH is very close to
one.I

The change in concentration with time is accompanied by

a significant change in the shape of the concentration pro- I
file. This is illustrated in Figure 5 where the concentra-
tion at points on the crack centerline is shown at three dif-
ferent times. In order to display all three curves on a sin-

gle graph, the data are presented in terms of the dimension-
less parameter C, defined as

C-Pu/ , - c? 0,

Ci = (o v ) (101)

where Ik

#)= concentration evaluated at the distance x
from the crack tip

C;O) = concentration evaluated at the crack tip

C= concentration at the mouth of the crack (equal
to the concentration in the bulk electrolyte) P

The lower curve is a typical short-time concentration
profile. The concentration gradient is large in the region
near the crack tip, approaches zero in the central region,

and increases again near the mouth of the crack. The cen-

tral curve, corresponding to a later point in time, behaves
similarly, but the cbhmge in the concentration gradient is
not as extreme as in the lower curve. The upper curve cor-

responds to the steady state. The gradient is small at the [
crack tip and increases continuously as the distance from
the crack tip increases. [

The shape (of the concentration profile is strongly in-
fluenced by +he crack-like geometry. At short times the in-

fluence of the ends is small except in the regions near the

i . . . .
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tip and the mouth of the crack. The flux in the central
region is primarily in the transverse direction. The small
gradient in the central region of the lower curve in Figure

5 is almost entirely due to an increase in the crack width

with increasing distance from the crack tip, rather than
significant transport in the longitudinal direction. As

the steady state is approached, the flux in the longitudinal

direction becomes much greater than that in the transverse

Hi direction except in the region near the crack tip. There,
L both components remain cf the same order of magnitude.

Crack Shape

~jJ The effects of changes in •h. 'rack shape are shown in

the next series of problems. Except for the crack shapes,

the problems are identiral to the refeence problem. One
species, the hydrogen ion, is considered. Transport is by

simple diffusion. The ion flux normal to the electrode-
LI electrolyte inLerface ir constant and equivalent to a cur-

rent density of 314 mnicroamps per square centimeter. The

L bulk-solution pH is seven.

The crack profiles are shown in Figure 6. They are

Srectangular, hyperoolic, and pie-shaped. All are nominally

0.2 centimeters long by 0.02 centimeters wide. The pie-

L shaped crack is one percent shorter than the others because
of the coordinate transformation used. The area of metal-

electrolyte interface is virtually the same for all of the

cracks; the maximum difference between any two is less than

five percent. Thp crack volumes vary by a factor of two.

The influence of shape on the behavior with time is il-
lustrated in Figure 7. The crack-tip pH is shown as a func-

Stion of tinie for each of the three crack shapes. For the
pie-shaped -rack the approach to steady state is initi- ly

U somewhat faster, for the rectangular crack the approach is

I
U ,
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initially slower, than for the hyperbolic crack. However,

the times to reach the steady state are virtually tha same,
about 700 seconds or twielve minutes. The steady-state
crack-tip pR is approximately one for all three shapes. The

differences are more apparent when the values are expressed

in terms of concentration rather than pH. For the pie-shaped

crack, the steady-state crack-tip concentration is 0.137
moles per liter. For the hyperbolic crack, the value is
0.099 moles per liter, For the rectangalr crack it is I
0,079 moles per liter.

The crack shape influences the form of the concentra- I
tion profile as shown in Figure 8. The steady-state concen-

tration along the crack centerline is plotted as a function
of distance from the crack tip for each of the three crack L
shapes. The ordinate in Figure 8 is C as defined by aqua-

tion (101). Thus, only differences in the shapes of the

concentration profiles are shown in the figure.
For the pie-shaped crack, the concentration profile is

very nearly linear, with a slight deviation from linrarity

in the region close to the crack tip. The concentration

F profile is parabolic for the rectangular crack. The prufile
for the hyperbolic crack lies between the other two.

The influence of time on the shape of •he concentration

profile is iiscussed above for the case of the hyperbolic

crack. The behavior is summarized in Figure 5 where the con-

centration or the crack centerline is shown at three differ-
ent times. Similar curves are presentea for the pie-shaped I
cz..;k in Figure 9 and for the rectangular crack in Figure 10.

The deviation from linearity near the crack tUp is caused
by 'chopping off' the tip of the wedge in making the coor-
dinate transformation. It may be shcwn that tne profile is
linear over the entire crack length only when the or~ccr tip
coincides with chc p,int of intersection of the extensiong I
of the two straiglht sides. (see pages 95 and 96)

I
I
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5 The times are the same as those in Figure 5. As in Figure 5,
the data are presented in terms of the dimensionless param-

eter C in order to display the curves in a single graph.
Comparison of Figures 5, 9, and 70 reveals that the be-

U havior with time is similar for all three crack shapes. At
short times there is negligible transport in the longitudinal

direction over most of the crack length. The concentration
gradient is large in the region near the crack tip, decreases
to a small value in the central region, and increases some-

what near the mouth of the crack. At intermediate times the
behavior i1 similar, but the change in the gradient over the
length of the crack is less extreme than at the shorter
timea. At large times the concentxration profiles approach

U steady state curves characteristic of the particular crack
shape.

SIt is stated above that the concentration gradiun ý in
the central region of the crack at short times is primarily
due to an increase in the crack width with increasing dis-

tance from the crack tip. This is apparent from the lower
curves (elapsed time equal to 0.164 seconds) in Figures 9

Utand 10. In the central region of the bottom curve in Fig-
ure 9, the concentration decreases linearly with increasing

[J distance from the crack tip. For this crack, the width also
increases linearly. In the central region of the bottom
curve in Figure 10, on the other hand, the concentration re-
mains constant. Since this crack i& rectangular, its width

U is also constant.

u Two-Dimensional Effects

The problems discussed in this section have been solved

II using a two-dimensional formulation of the transport equa-
tions. For problems involving transport in crack-like re-
gions, houever, one might expect transport in the transverse

I
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direction to play a relatively minor role. This expectation

is based on simple dimensional considerations. For a more

quantitative view, data from the previous set of problems

may be used. The rectangular crack is particularly conve-

nient for this purpose because of its simple geometry.

The transverse concentration gradient varies from zero

along the crack centerline to a finite value at the crack I
wall (the metal-electrolyte phase boundary). At the wall,

the transverse gradient is proportional to the normal flux

and, because of the boundary conditions, remains constant

with time. The longitudinal gradient varies with both time

and position. The ratio of the two gradients provides a

simple and direct measure of their relative magnitudes.

In Figure 11 the gradient ratio is shown as a function

of time for three points adjacent to the crack wall. This

ratio is defined as the magnitude of the longitudinal con- I
centration gradient divided by the transverse concentration

gradient. The points are located at distances from the i
crack tip equal to one-eighth, one-fourth, and one-half

times the overall crack length.

At short times, transport in the transverse direction

is much greater than in the longitudinal direction, and the

gradient ratios are small at all three points. As time in-

creases, transport in the longitudinal direction becomes in-

creasingly important. At the end of one minute, the gradient

ratios are all of the order of one, and the gradients in the

longitudinal and transverse directions are approximately

equal. As time increases further, the ratio at each point

approaches a steady state value which is a function of dis- -
tance from the crack tip. Because the crack width and nor-

mal flux are both constants, the steady state value at each [
point is proportional to the total wall area lying between

that point and a point on the crack centerline at the crack

tip. The steady state values at one-eighth, one-fourth, and

!i
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I one-half are, therefore, 3.5, 6.0, and 11.0, respectively.

Only for points close to the crack tip are the transverse

and longitudinal concentration gradients of the same Qrder

of magnitade.

II Two-dimensional transport effects may also be viewed
from another perspective. Since there is a concentration

gradient in the transverse direction, the concentration

varies from point to point on a section perperAicular to the
crack axis. As a measure of this variation, consider theA

parameter C(2. defined as

A I
C(o "- -C( - C(Y) (102)

(12

where CwJ= concentration at a point adjacent to the crack

wall and located at a distance X. from the

crack tip

GC(, = concentration at a point on the crack center-
line and located at a distance X0 from the

crack tip

Co = concentration in the bulk electrolyte

When C(xo) is one, the concentration at the given transverse
A

section is highly non-uniform. When C(>o) is zero, the con-

centration is uniform across the section. Because of the

assumed symmetry Pbout the crack centerline, the numerator
in equation (102) is equal to the difference between the max-[ imum and minimum concentrations on the given transverse sec-
tion.Ii A

The fanctions ':• for three transverse sections are
I shown as functions of time in Figure 12. The sections are

located at distances of one-eighth, one-fourth, and one-half

I
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times the overall crack length. The curves for the sec-

tions at one-eighth and one-fourth are indistinguishable 3
and are shown as a single curve. The clu-ve for one-half

lies sl.-ghtly above the other c

Initially, the concentration changes more rapidly at I
points along the wall than at points away from it. There

is a substantial variation in the concentration across the I
A

width of the crack and the function C(X,) is close to one.

As time increases, the concentration becomes more uniform

and the variation across the width of the crack decreases.

After one minute, the variation is about one percent. As I
steady state is approached the variation becomes quite

small. It is less than one percent at all three sections.

These results indicate that two-dimensional transport

effects are significant only at short times or at points

near +he ends of a crack. The results for hyperbolic and

pie-shaped cracks are similar. In the case of the gradient

ratio, however, they do not admit as simple a geometric in-

terpretation as is the case for the rectangular geometry.

Crack Le.&tLh

The effect of crack length is illustrated by the next I
series of problems. The cracks have hyperbolic profiles and

are 0.0? centimeters wide. The influence of crack width is

considered elsewhere.

Consideration is limited '• hydrogen ion transport by 3
simple diffusion with a constant normal flux at the crack

wall. The flux is determined from the rate of the film for- 3
mation reaction (eqn. 94) with the potential difference at

the metal-electrolyte interface equal to zero and the hydro-

gen ion concentration equal to 10-7 moles per liter

(pH = 7.0). The oxide film thickness is fixed at fifty ang-

stroms. This corresponds to a normal current density of 314
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microamps per square centimeter. The hydrogen ion corr

tration in the bulk electrolyte is 10-7 moles per liter.

At this point, it is convenient to introduce the notion
of a crack aspect ratio. The aspect ratio will be defined as

the ratio of crack length to crack width where the crack
width is measured at the mouth of the crack. In this prob-

lem set, the cracks have aspect ratios ranging from 1.25 to

40. The profiles of three are shown in Figure 13. In theU upper portion of the figure, tho cracks are drawn to the

same scale in the length and width directions. In the lower

portion, they are drawn with the scale in the width direc-

tion ten times the scale in the length direction. The cracks
have aspect ratios of 1.25, 10, and 40. The crack with the

aspect ratio of ten is the one used as a reference problem.

The profi).es range from what should probably be called a

I] 'dimple' to a truly crack-like geometry.

The results are summarized in Figures 14, 15, and 16.

U In Figure 14, the crack-tip pH is plotted as a function of

time for each of the geometries shown in Figure 13. Both the

time to reach steady state and the steady state concentration

increase with increasing crack length. Even for the shortest
crack (the 'dimple'), the steady state pH is less than three.

In Figure 15, the steady-state crack-tip pH is shown as
a function of crack length. Note that the scale on the ab-

hi scissa is logarithmic rather than ainear. The curve exhibits

a slight negative curvature for small values of crack length

but approaches linearity as the crack length increases. The

curvature at small values of the crack length is a result

both of the function plotted and the method used to define
the crack domain. As the crack length approaches zero, the

pH at the crack tip assymptotically approaches the bulk solu-

tion pH. In this case that value is seven, The method used
to define the crack domain and its effect on these results is

discussed below.

I
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For values of the crack aspect ratio much greater than

one, the curve becomes linear. In this range a doubling of

the crack length reduces the crack-tip pH by 0.6. In tie

next section, it is shown that the slope of this curve is

independent of the normal flux.

The steady-state concentration profiles for the cracks

in Figure 13 are shown in Figure 16. The data have been
normalized by plotting on the ordinate the function ý, de-

fined by equation (101). A curve has been drawn through the
points for the 0.200-centimeter-long crack. No attempt has

been made to draw curves for the other two geometries, since

this would obscure the data themselves. It may be seen that

all the data very nearly fall on a single curve.

The data for the 0.025-centimeter-long crack fall
slightly below those for the other two geometries. Like the

curvature exhibited at small crack lengths in Figure 15, 1
this is due to the method used to define the crack domain.

When transforming a crack onto a rectangle in the computer

program, the crack is bounded on the solution side, not by a

straight line, but by an ellipse. As a result, the crack

length measured along the crack centerline from the tip to
the bounding ellipse is greater than the length measured tc

the metal surface. For the longer cracks the difference be- [
tween the two is negligible; but for the 0.025-centimeter-
long craci the difference is about ten percent.

Boundary Conditions

In the problems considered thub far, the flux norma. to

the crack wall (metal-electrolyte phase boundary) has been I
treated ps constant. In the next series of problems, the

effects of other boundary conditions are examined. The I
cracks are 0.200-centireters long by 0.02r?-centimeters wide
and hyperbolic in profile. Corsideratioi, is limited to

I
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hydrogen ion transport by simple diffusion.

The concentration dependence of the normal flux is F-

amined first. The flux is determined from the rate of the

film formation reaction (eqn. 94) with the potential differ-

Lence across the metal-electrolyte interface equal to zero,

and the oxide film thickness equal tc fifty angstroms. The

current density is calculated from equation (96) using the

hydrogen ion concentration at points adjacent to the crack

wall. Thus, the normal flux varies both with time and posi-
tion alo-qg the crack wall. The hydrogen ion concentration

in the bulk electrolyte is 10-7 moles per liter.
Li The results are suimmarized in Figures 17, 18, and 1I.

In Figure 17, the crack-tip pH is shown as a function of

time. The results of the reference problem are included for
comparison. The curve for this problem lies everywhere a-

Sbc.ve the one for the reference problem. As these results
Erhow, including the concentration dependence of the normal

Sflux in the boundary conditions reduces the flux and in-

creases the steady state pH. In particular, when the pH at

SII the metal-electrolyte interface is 2.5, the normal flux is

about one aAd one-balf orders of magnitude less than when

the pH is seven. The magnitude of this effect may vary from

one reaction to another, but the direction is always the
same. An increase in the concentration of a product species

always decreases the reaction rate.

The variation of the steady state concentration along

the crack centerline is showm in Figure 1. The results ob-

tained for the reference problem are also shown for compari-

I son. The data have been normalized by plotting as the ordi-

nate the function C defined by equation (101). The concen-
J tration profile for i;his problem is very nearly the same as

that for the reference problem. The former, however, lies

everywhere above the latter.

L Because the flux normal to the cr.ck wall decreases as
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the hydrogen ion concentration increases, it is greater at

the mouth of the crack than at the crack tip. This is shown
in Figure 19 where the normal flux is plottea as a function

of distance from the crack tip at steady state. For conven-
ience, the flux is expressed as a current density. The flux
at the mouth of the crack is more than eight times greater
than at the crack tip.

When the longitudinal concentration profile is compared
with one obtained for a constant value of the normal flux,
as in Figure 18, it may be seen that the effect of the vari-
ation in the normal flux is to reduce the magnitude of the

longitudinal concentration gradient near the crack tip, and
to increase it near the mouth of the crack. The concentra-
tion profile for product species obtained using charge-
transfer boundary conditions is always found to lie above

that obtained using constant flux boundary conditions.

The same boundary conditions at the crack wall have

been used to investigate the effect of changes in the con-
centration of the bulk electrolyte. The concentration de-
pendence of the normal flux is considered but the oxide-film

thickness is fixed at fifty angstroms. The potential dif-
ference at the interface is set equal to zero.

The results are summarized in Figure 20. Here the p1

at the crack tip is shown as a functior of the pH in thie
bulk electrolyte. There are two distinct regions in the

figure. In the first, the pH in the bulk electrolyte is

small and the crack-tip pH Is approximately equal to the pH
in the bulk electrolyte. In this rrgion, the concentration

difference between the tip and the mouth of the crack is
much less than the concentration at the mouth of the crack.
The variation in the pH along the length of the crack is

negligible and the normal flux is essentially constant every-

where along the crack wall.

In the second region, where the pH in the bulk electro-

I!
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lyte is large, Ahe pH at the crack tip is virtually indepon-

dent of the pHl in the bulk electrolyte. In this region, the
difference between the concentrations at the tip and the

mouth of the crack is much greater than the concentration at

the mouth of the crack. Thus, the hydrogen ion concentration
in the bulk electrolyte may be treated as being zero, and the

B variation in the normal flux along the crack wall is virtually
the same as that shown in Figure 19.

In the final problem of this set, the effects of both

film growth and concentration are considered. The normal

U flux is determined from the rate of the oxide-film formation
reaction (eqn. 94) with the potential differenoe across the

metal-4electrolyte interface equal to zero. The hydrogen ion

concentration in the rate equation (eqn. 96) is taken as the
concentration in the electrolyte at points adjacent to the

[ crack wall. The initial film thickness is taken as fifty

angstroms at every point on the boundary. The film thick-
j ness at each boundary point is then obtained by numerical

integration of equation (100).
U The results are summarized in Figures 21 and 22. In

the upper portion of Figure 21, the crack-tip pH is shown

as a function of time. For comparison, a curve showing the
response in the absence of film growth (corresponding to the

upper curve in Figure 17) ic also shown. In the lower por-

U tion of the figure, the film thickness at the crack tip is

shown as a function of time.

U At very short times, there is no sensible change in the
oxide-film thickness and the pH versus time curve coincidesi

Swith that obtained using a constant film thickness. With

increasing time, the thickness of the oxide film increases,

dec:,,-sing the hydrogen ion flux into the crack. The con-

centration at the crack tip then beromes less (the pH great-
er) tV-- Tn tiue comparable problerL with no film growth.

S":•.tinued film -rowth results in the most striking featureII
I
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I
(.f the pH-versus-time curve. At about one hundred seconds

the curve exhibits a minimum after which the pH rises con-
tinuously.

This calculation was terminated after an elapsed time

of about three thousand seconds or fifty minutes (calculated
time, not computer running time) so no detailed information
was obtained on the beh'vior at large times. It should be
observed, however, that the concentration in the crack Gaa-
not attain a steady state value unless the rate of oxide
film growth beccmes zero. Thus, the pH will continue to
rise toward the bulk electrolyte value (in this case seven)
unless some other reaction intervenes or the potential dif-

ference across the metal-electrolyte interface is reduced to
its equilibrium value.

For the first problem in this set, the oxide-film
thickness was fixed at fifty angstroms. Under this con-

straint, the normal flux was found to exhibit considerable
variation along the length of the crack. It is shown in
Figure 19, for example, that the normal flux near the mouth
of the crack is about eight times greater than at the crack
tip. When the influence of oxide film growth is considered,

however, it is found that the nomal flux at the crack wall
is very nearly ccnstant. In Figure 22, the normal flux,
expressed as a current density, is shown as a function of
distance from the crack tip. The variation in the film
thickness along the length of the crack is also shown. The

difference in the normal flux between the tip and the mouth
of the crack is less than ten percent. TLe greater thick-
ness of the film near the mouth of the crack tends to com-

pensate for the lower ion concentration in this region.

[
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I Convective Transport

IIThus far, our attention has been restricted to problems
involving transport by simple diffusion. The effects of

ii convection and migration have been ignored. We now wish to
consider these other modes of transport. The effects of

H convective transport are considered in the next series of
problems. Transport by migration is considered in the fol-
-lowing problem set.

When a structural member containing a crack is loaded,
the cra- opens and the volume of the crack increases. The
crack volume likewise increases as a crack grows or length-

ens. In either case, some of the electrolyte is drawn into

the crack from the bulk solution in the same way liquid is
drawn into a suction pump. Our interest here is in the

Seffect of such flow on the composition of th. electrolyte
in the crack.

To be morc explicit, consider the pie-shaped crack
shown at the top o. Figure 2. If the crack deforms in such
a way as to remain pie-shaped, the straight sides must remain
straight. In this case, it is convenient to identify two

modes of crack deformation. For the mode identified as

iJ 'crack growth' in Figare 23, the sides of the crack are
displaced vertically with no change in the crack angle. The

U ratio of the vertical displacement of a point on the crack
wall to the horizontal displacement of the crack tip is a
constant for all points on the crack wall. For the mode

identified as 'crack opening' in Figure 23, the crack angle
j incresecs with no change in the dioplacement of the crack

tip. In this case, the displacement of a point on the crack

vall is proportional to its distance from the crack tip.

Any crack deformation, satisfying the requirement that the
pie-shaped crack remain pie-shaped, can be expressed as a

linear combination oi these two deformation modes.

I
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A closed-form solution for the solvent velocity in a

pie-shaped crack has been obtained using the Stokes-flow

approximation to the Navier-Stokes equations. When the

crack angle,Zc 0, is small, the solution may be expressed

approximately as I
[AA = ~[ 1(0-a)

(103
Z/A T / Q['"

where

'4 = velocity component in the radial (longitudinal)

direction (cm/sec)

velocity component in the tangential (transverse)

direction (cm/sec)

u = crack half angle (radian)

S= crack length (cm )

S= time rate of change of crack half angle

(radian/sec)

= time rate of change of crack length (cm/sec)tL

A,) = coordinate of a point (cm, radian)

The stream lines corresponding to the velocities in

equations (103) are shown in the central portion of Figure

23 for the two modes of crack deformation. In the lower

portion of the figure, the magnitudes of the centerline

velocities are shown as functions of the distance from the

crack tip.

For both deformation modeb, the solvent flow is toward

the craik tip. At a given distance from the crack tip, the

velocity in the radial direction is a maximum on the crack ,I;
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centerline. For the 'crack opening' mode, the magnitude of

the solvent velocity increases linearly as the distance from

the crack tip increases. For the 'crack growth' mode, the
so~vent velocity is independent of the distance from the

H] crack tip.

The results obtained for the pie-shaped crack provide

H a good approximation to solvent motion in a crack-like re-

gion. For the numerical work, however, a different geometry

H has been used. This geometry is somewhat less restrictive
and of more direct physical significance. The configuration
adopted is shown in Figure 24. It consists of a double

edge-notched tensile specimen 2.40 centimeters wide. The

side notches are 0.20-centimeter-long by 0.02-centimeter-

wide hyperbolic notches. The deformation of the crack walls

is determined from A. A. Griffith's [23] analysis for a
specimen containing deep hyperbolic notcbes. The rate of

crack deformation is found to be directly proportional to

the specimen loading rate.

In this series of problems consideration is limited to

transport of the hydrogen ion and the normal flux is con-

I stant at every point along the crack wall. The flux is de-
termined fr-om the rate of the film formation reaction

(eqn. 94) with the potential difference at the metal-elec-

trolyte interface equal to zero and the hydrogen ion con-

centration equal to 1 moles per liter. The oxide-film
thickness is fixed at fifty angstroms. Under thesp condi-

Ij tions the current density normal to the crack wall is 314
microamps per square centimeter. The hydrogen ion concen-

vi tration in the bulk electrolyte is taken as 10- 7 moles per

liter.
The solvent velocity is calculated using a prescribed

specimen loading rate and the initial specimen geometry.
The crack dimensions are assumed to remain constant with

time. In reality, while the length of the crack is not

U
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affected by the loading, the crack width increases with

time. The effect of changes in the crack width, ignored

in this set of problems, is examined below.

In Figure 25, the magnitude of the solvent velocity

along the crack centerline is shown as a function of dis-

tance from the crack tip. The nominal net-section strain

rate is 10-6 centimeters per centimeter per second. The
velocity is for all intents and purposes a linear function

of distance from the crack tip. The velocity is zero at

the crack tip and a maximum at the mouth of the crack. At

the mouth of the crack, the centerline velocity is 3.34 x

10-5 centimeters per second. Since the rate of deformation

of each point along the crack wall is a linear function of

the nominal strain rate, the velocity at any other strain

rate may be determined by simple proportioning from this
curve,

With the nominal net-section strain rate equal to 10-6

centimeters per centimeter per second, the difference be- I
tween the results obtained with convective transport and

those obtained in the reference problem is barely percepti-

ble. With the strain rate increased to 10- centimeters per

centimeter per second, a difference is readily apparent.

The results obtained at the latter strain rate are summarized

in Figures 26 and 27.

In Figure 26, the crack-tip pH is shown as a function

of time. The solid curve corresponds to the results for

the convective-diffusion problem at a nominal strain ratei

of 10 centimeters per centimeter per second (maximum

solvent velocity of 3.34 x centimeters per second).

A brokien curve, illustrating the behavior observed for

the reference problem, is included for comparison. The

results for the two problems are virtually identical for

times less than seventy seconds, about one-tenth of the

time required to reach steady state. For times greater than

[
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I seventy seconds, the crack-tip pH for the convective trans-

port problem is somewhat greater than that for the reference

problem. At steady state, the ion concentration at the crack

tip for the convective transport problem is about twenty-five

jpercent less than that for the reference problem.

The steady state concentration along the crack center-

U line is shown as a function of distance from the crack tip

in Figure 27. The results of the convective transport prob-
lem and the reference problem are both shown in the figure.

The data for the reference problem have been normali7ed in

the same way as in previous figures. The fiuiotion plottid

as the ordinate is C defined by equation (101). The data
for the convective transport problem have been normalized in

U the same way except that the value C(0) in the denominator

in equation (101) has been taken as the value obtained in

i the reference problem. In other words, in normalizing the
data both sets have been divided by the same number.

The effect of the solvent motion is to reduce the mag-

nitude of the concentration gradient and thereby to reduce
the concentration at every point within the crack. The in-

fluence on the concentration gradient is the greatest at the
mouth of the crack where the solvent velocity is a maximum.

SThe influence decreases as the distance from the crack tip
decreases and the solvent velocity decreases.

Crack Width

SAs mentioned above, the effect of changes in the crack

geometry with time was ignored in generating the results

summarized in Figures 26 and 27. A substantial change in
the crack dimensions may occur, however, in times of the

i order of the time required to reach steady state, particu-
larly at the higher strain rates. For example, when the

nominal net-section strain rate is constant and equal to

I
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10-4 centimeters per centimeter per second and when the

specimen configuration is that shown in Figure 24, the
crack width increases from an initial value of 0.02 centi-

meters to 0.26 centimeters in 700 seconds. Thus, in the

time required to reach steady state the crack width would

have increased by a factor of thirteen.

The significance of such a change may be judged from

the results of a set of problems run for hyperbolic cracks

of various widths. The cracks are all 0.20 centimeters

long. Transport is by simple diffusion. The boundary con-

ditions are identical to those used in the reference problem

and in the convective-diffusion problem.

The results are summarized in Figure 28. The steady

state concentration at the crack tip is expressed in moles
per liter and plotted as a function of crack width. For

comparison with the convective-diffusion problem discussed

above, the steady state concentration for the crack 0.20-
centimeters long by 0.02-centimeters wide loaded at a rate

of 10- 4 centimeters per centimeter per second is shown in

the figure. The times required for such a crack to attain

the same width as the widths of the cracks included in this

problem set are also shown.

The steady state concentration at the crack tip is re-

duced by a factor of about one-half each time the crack
width is doubled. By comparison, had the crack width in the

convective-diffusion problem been a.llowed tc increase rather

than being fixed at 0.02 centimeters, it would have doubled U
in about Eizty seconds or less than one-tenth of the time

required 'o reach steady state.

These results indicate that gecmetry exerts a much

stronger influence on composition than does solvent motion.

This conclusion is strengthened by the results mentioned a- U
bove for a loading rate of 10-6 centimeters per centimeter

per second. At this loading rate, the effect of convection I

I
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I iwas barely perceptible. The difference between the concen-
tration calculated for this problem and that obtained for

the reference problem was everywhere less than half of one
percent. Nevertheless, for times of the order of the time
to reach steady state, the width of this crack should have

more than doubl.ed, reducing the concentration by more than
B one half.

Migration

In the problems discussed thus far, transport by migra-jtion has been ignored. The results are, therefore, strictly

valid only when the electrostatic potential is everywhere
diminishingly small. One indication of the range of appli-
cability of these results is provided by the next problem.
A broader view is provided by the analytic results presented

in the next section.
The problem considered here is one of electrochemical

transport in a rectangular crack 0.20-centimeters long by
0.02-centimeters wide. The choice of the rectangular crack
shape is based on the results presented above on the effect
of crack shape and to facilitate a later comparison with an

j analytic solution to a similar problem.
The electrolyte consists of three ions: the sodium

ion (Na+), the chloride ion (C1-), and the hydrogen ion (H+).

The bulk electrolyte is a 0.6-mole per liter sodium-chloride
solution with a pH of seven. The initial composition of the
electrolyte is the same.

At the crack wall, the normal fluxes of both the sodium

ion and the chloride ion are zero. The hydrogen ion flux is
constant and has the same value as in the reference problem.

j That is, the value is determined from the rate of reaction
(94) with the potential difference across the metal-electro-

lyte interface equal to zero, the pH equal to seven, and the

I
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oxide-film thickness equal to fifty angstroms. Therefore,
the normal current density is 314 microamps per square cen-

timeter.

The behavior with time is summarized in Figure 29. Two

curves are shown. The first shows the variation in the

crack-tip pH with time. Perhaps the most striking aspect of

this curve is its similarity to the curves obtained in ear-
lier problems. It exhibits no new or unusual features.

The second curve in Figure 29 illustrates the behavior
of the electrostatic potential, measured at the crack tip,

with time. Since the electrostatic potential is zero at the
mouth of the crack, the potential at the crack tip is numer-

ically equal to the potential drop along the length of the

crack. Note that this potential drop is always positive.
That is, it is always of a sense to carry some portion of

the total current. U
At short times, the gradient of the hydrogen ion con-

centration is small, and nearly all of the current is carried U
by the migration of ions in the electrostatic field. The

electrostatic potential remains close to its initial value I
of about nine millivolts. As the hydrogen ion concentration
reaches a value of about one percent of its steady state

value, the potential begins to decrease rapidly. As the hy-

drogen ion concentration increases further, an increasing
fraction of the total current is carried bj hydrogen ion dif- U
fusion and the electrostatic potential continues to drop. At

steady state, a substantial fraction of the total current is
carried by diffusion and the electrostatic potential stabi-

lizes at about 1.5 millivolts. This is approximately one-

fifth cf the initial value.
Two unusual features of the potential versus time curve

should be mentioned. At short times, the computed value of
the potential rises before it starts t3 fall Pgain, intro-

ducing a 'bump' in the curve. This 'bump' is an artifact

!
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caused by truncation error in calculating the boundary con-

ditions. It does not represent the true behavior of the

system, so the solid curve is not drawn through this data.
At steady state, the calculated values are erratic. Varia-

111 tions in the computed values as large as eight percent may

be observed. This behavior also derives from the method

used to construct boundary conditions. As indicated in Sec-

tion IV, it is planned to modify the routines used in the

LI computation of the boundary conditions. The planned modi-

fication should eliminate both of these defects.

The influence of migration on the behavior of the hy-

drogen ion may be judged by comparing the pH-versus-time

curve in Figure 29 with the upper curve in Figure 7. That

curve was obtained using the same crack geometry and bound-

ary conditions as the present problem, but with transport

L by simple diffusion only. The two curves are virtually

identical. There is a difference between the two, but the
difference is extremely small when the concentrations are

expressed in terms of pH.

The effect of migration is shown more clearly in Figure

30. Here the steady-state hydrogen ion concentration along
the crack centerline is shown as a function of distance from

the crack tip. In addition to the results for this problem,

the results obtained fc.' transport by simple diffusion are

U reproduced from Figure 10. The effect of migration is to

reduce the hydrogen ion concentration everywhere within the

[J crack. Hcwever, the reduction is quite small. In the pres-

ent case, transport by both migration and diffusion, the

[I concentration is about three percent less than in the case

of transport by diffusion only.

The influence of the potential gradient on the salt

ions is summarized in Figures 31 and 32. In Figure 31, the

changes in the concentrations of all three ions are shown as

functions of time. In every case, the quartity plotted on

I
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the ordinate is the difference between the concentration at

the crack tip and the initial concentration in the electro- i
lyte. Alternately, since the initial concentration of each

ion is the same as its concentration in the bulk electrolyte,
the ordinate may be viewed as the total concentration differ-

ence over the length of the crack.

The curves have several interesting features. Perhaps
the most obvious is the way changes in the ion concentrations

are coupled by the requ.irement of electroneutrality. The in- -
crease in the hydrogen ion concentration is accompanied by an
increase in the concentration of the negative salt ion (C1-)
and a decrease in the concentration of the positive salt ion

(Na+). In addition, the hydrogen ion reaches a stable
steady-state value in less time than does the positive salt
ion. The ions do not respond with a single time dependence.

This is, perhaps, not surprising. The diffusion t efficients H
of the three ions are unequal, that of the hydrogen ion being
the greatest and that of the positive salt ion the least.

However, this behavior is in contrast to that bf the binary
electrolyte where the system responds with a single time-

dependence.

The difference in the transport properties of the two

positive ions is also reflected in the behavior of the nega-

tive salt ion. At first, the concentration of the negative 1I
ion incrcases with time. Then, a point is reached after
which the concentration of the hydrogen ion remains essen-

tiaily unchanged, while the concentration of the positive

salt ion continues to decrease under the influence of the

electrostatic potential. The concentration of the negative i
ion then Pdses through a maximum and subsequently decreases.
Finally, the concentration of the negative salt ion approaches

a steady state value from above.
The steady-state concentration profiles are •hown in

Figure 32. There are three curves, one for each ion.

I
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Plotted on the ordinate is the difference between the con-

centration at a point on the crack centerline and the con-
"centration in the bulk electrolyte. The abscissa is dis-
tance from the crack tip. The concentration profileb are

[Iall very nearly parabolic. As required by electroneutrality,
the sum of the ordinates is everywhere equal to zero.

BThe spatial variation of the electrostatic potential is
illustrated in Figure 33. The initial and steady state
values along the crack centerline are shown as functions of

distance from the crack tip. The shapes of the curves are
nearly the same. The initial profile is parabolic and the

final profile is very nearly parabolic as well. However,
the magnitude of the potential at steady state is much less,U five times smaller, than it is immediately following immer-
sion of the specimen.

LI In Figure N4. the current density measured along the j
crack centerline is shown as a function of distance from the1] crack tip. Since the normal flux at the crack wall is con-
stant, this curve is invariant with time. The curve is

linear over most of the crack length. Near the mouth of the
crack, however, there is a moderate deviation from linearity
caused by two-dimensional transport effects.

At elapsed times which are small with respect to the
time required to reach steady state, essentially all of the

L current is carried by the migration of ions in the electro-
static field. On the other hand, at times of the order ofLI the time to reach steady etate, a substantial portion of the
current may be carried by ion diffusion. There is no unique
method for determining the fraction of the total current

carried by diffusion as opposed to the fraction carried by

migration. But, we can obtain a measure of this fraction in
a way that is reasonable and makes some physical sense.

One way to estimate the fraction of the total current

f carried by diffusion is simply to partition the total flux

I
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of each ion into a diffusion flux and a migration flux, and

consider the ratio of the current carried by the diffusion

fluxes to the total current. Thus we might define

L,+. M (104)1

where

S -V I\ DI.Cf (105-a)

2Z 1,! (105-b)IM = -• ••,Zi OiCi Vtjp

V
The partitioning of the current might also be reasonably

approached from another point of view. At steady state, the

total flux of both salt ions must everywhere be equal to

zero. This fc,1lows from the boundary conditions and conser-

vation of mass. Thus, the current must all be carried by

"hydrogen iono, and we might consider the fraction of the

total current carried by hydrogen ion diffusion, namely

PZ L +' (106)

where

it) (107)

These two measures of the fraction of the total current

carried by diffusion. P 1 and PI2, are shown in Figure 34.

The fractions have been evaluated from the steady state data

shown in Figures 32 and 33, and are plotted as functions of I
distance -from the crack tip. The value of P1 is everywhere

less than P-, but both measures indicate that a greater [
SlI
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fraction of the total current is carried by diffusion as the

p distance from the crack tip increases. Also, both measures

indicate that a greater portion of the total current is

carried by diffusion than is carried by migration.

N

LIU

K
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VI DISCUSSION 3
The results presented in the last section covered a

broad range of geometric and kinetic variables. The effect

of each was examined separately and in some detail. In this I
section a more general perspective is adopted. First, based

on the numerical results of the last section, the character- f
istics of transport in crack-like regions are summarized.

Consideration is then centered on the extent, if any, to [
which this characterization is of more general validity.

Like other computer programs, the program developed in

this study is capable of providing detailed answers to par-

ticular questions. It is ill-suited to and inefficiently

employed in a parametric analysis of a wide range of a large 0
number of variables. Therefore, it will be convenient in

this discussion to draw upon the one-dimensional steady-state

transport analysis developed in Appendix C. While its formu-

lation constrains the application of this analysis, it has

the important advantage that many useful results may be ex-

pressed in a simple, closed form.

From the results of the previous section, the following

general observations can be made:

1) 'Lime - The initial rate of change of the crack-tip pH is

quite large. For times greater than or equal to the

diffusion time, however, the time rate of change of
the pH is small regardless of the form of the boundary

conditions. Referring to Figure 4, for example, with

a constant normal flux at the crack wall sufficient to

produce a steady-state crack-tip pH equal to one, the

The diffusion time is defined here as (a2/D) where a is

the crack length and D is the diffusion coefficient of the
disaolved species of interest.

I
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crack-tip pH is less than five in one millisecond and

IIless than two in ten seconds. These times should be

compared to the diffusion time of 444 seconds or the

time to reach steady state of 700 seconds.

Under more complex boundary conditions, the steady

state may not be attained in times of the order of the

H diffusion time. Shown in Figure 21, for example, are

results obtained using charge-transfer boundary con-

ditions with oxide film growth. Even here, the time-

rate-of-change of the pH is small for times of the

U order of the diffusion time and larger. At the end of

one hour, for example, the pH differs by less than one

unit from the value at one minute.

While this observation has been expressed in terms

of the pH, it applies equally to the common logarithm

of the ccncentration of any dissolved species. It is

asserted, not that changes in concentration with time

'are insignificant, but that the order of magnitude of

the concentration is slowly time-varying over most of

U the observable time domain.

2) Two-Diriensional Transport Effects - The influence of

j transport in the transverse direction as compared to

the longitudinal direction may be judged from the var-

iation in the electrolyte composition across the width

of the crack. If a variation of less than one percent

is regarded as negligible, the effects of transport in

the transverse direction are negligible at times great-

er than the diffusion time for all cracks having an

f aspect ratio greater than three. At large times end

in regions near the ends of a crack, composition var-

iations due to transport in the transverse direction

may be observed, but these are small as compared with

II the variations along the length of the crack.

II,
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3) Crack Geometry, Shape - The shape of a crack has a modest m
but definite effect on the behavior of the electrolyte

contained within it. The shape affects both the magni- m
tude of the crack tip concentration and the shape of

the longitudinal concentration profile. For example,

under identical constant flux boundary conditions, the

steady-3tate concentration difference between the tip

and the mouth of a pie-shaped crack is nearly twice as

great as for a rectangular crack having the same length

and width. For the same boundary conditions, the

steady-state longitudinal concentration profile is

approximately linear for the pie-shaped crack and para-

bolic for the rectangular crack. The results for a hy-

perbolic crack lie between those for the other two

crack shapes.

4) Crack Geometry, Length and Width - The geometric param-

eters having the greatest effect on electrolyte compo-
sition are the length and the width of the crack. The
results for hyperbolic cracks with constant flux bound-

ary conditions may be cited as an example. To a good
first approximation, the steady-state concentration
difference between the tip and the mouth of the crack

is found to be proportional to the square of the crack

length and the reciprocal of the crack width (see eqn.111).

5) Boundary Specification Along the Crack Wall - The form of

the boundary conditions along the crack wall (metal- I
electrolyte interface) may have a significant influence

on the concentration of an ion as measured by its aver-

age or maximum value. It has little effect, however,

Sthe shape of the concentration profile . This is

illustrated, for example, by the results shown in

Figures 18 and 19.

I
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6) Composition of the Bulk Electrolyte - The electrolyte

composition in the bulk solution may bear no direct

relation to that within a crack-like region. This is

illustrated by the results shown in Figure 20.

7) Transport by Convection - The solvent motion associated

with crack opening or 'yawning' has a negligible in-

fluence as compared to the effects of crack geometry

LI and transport by simple diffusion.

8) Transport by Migration - Transport by migration in an

electrostatic field appears to have little influence

on the concentration of the product species. The

principal effect of m:,.gration is to alter the concen-

trations of the salt ions in accordance with the re-

quirement of electroneutrality.0
The first two observations are perhaps not surprising

H since they are consistent with simple dimensional arguments.

The remainder are based solely on numerical results, those

presented in the last section and many others not shown ex-

plicitly. They point to the conclusion that the factors

which exert a primary influence on the concentration of the

ith species in a crack-like region are: ai, the mean value

of the normal flux of the ith species; a, the crack length;

H and b, the crack half-width. Other factors, such as crack

shape or transport mode, appear to exert a secondary influ-
H ence.

While the above observations represent an accurate sum-

mary of the numerical results, the data upon which they are

based is limited. The last observatio, in particular is

based on the results of a single problem. There remains the

question, therefore, of whether these observations are gen-

erally applicable to transport in crack-like regions.

To answer this question requires further information.

I
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Rather than generate additional numerical results, it is more
convenient to exploit the observation that composition varia-
tions in the transverse crack direction are small with re-
spect to variations in the longitudinal direction. This
suggests that a crack-like region may be treated with rea-
sonable accuracy as a one-dimensional continuum. The reduc-
tion of the problem to dependence on one spatial variabl 6
results in a simplified set of governing differential equa-
tions as shown in Appendix C. The advantage of this approach
is that closed-form solutions may be obtained for a number of

cases important to our discussion.

Simple Diffusion - Dominant Effects

Suppose we begin by looking at transport by diffusion
only. Consider a single species, Si, in a rectangular crack
with a constant flux, Jl, normal to the crack wall. From
equations (C-3a, -8 and -9) in Appendix C, the steady state U
concentration is [I

S+ (a - " (108)

where

weeC.1 = concentration of ith dissolved species (mole/cm3) L
S= concentration of ith species in the bulk K

electrolyte (mole/cm3 )

ji= normal flux of ith species at the crack wall [
(positive inward) (mole/cm -sec)

Di= diffusion coefficient of ith species (cm 2/sec) [
0X = crack length (cm) I

I,
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b = crack half-width (cm)

IX = distan ce from the crack tip (cm); [o k x 6 a)

A similar result may be obtained for transport by dif-
fusion within a pie-shaped crack. From equations (C-3b, -8

and -9) in Appendix C with a constant normal flux, Jn, the

steady-state concentration of the ith species is

N + (,'I- --- x) + *v/ , I ' )2  - I ( ( 109
(Cl~ ~ ~ ~ ~ - D .' +e, 1

•] (109)

where

Se = a number between zero and one, typically small

X =distance from the point of intersection of the
extensions of the straight sides of the crack (cm)
[ co.e,4a]

It should be noted that the normal flux, Jn, appearing
U in equations (108) and (109) is taken as positive for a mass

flux INTO the crack. Also, in obtaining equation (109), the

crack tip is located a distance ea from the point of inter-

section of the extensions of the straight sides of the crack.

Thus, in general, the width of the crack at the crack tip is

non-zero and the crack profile is similar to that of the pie-
shaped crack shown in Figure 6.

II Flim equation (108), the steady-state concentration pro-
file for a rectangular crack is parabolic. From equation

U (109), the steady-state concentration profile in a pie-shaped

crack is very nearly linear. The deviation from linearity

is significant only for values of x close to ea when the

second term in the brackets on the right-hand side of equa-

tion (109) is no longer negligible. When 6, in equation

(109), is zero, the width of the pie-shaped crack is zero at

il
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the crack tip, and equation (109) reduces to

(-c) x) (109-a) I

The steady state concentration is a linear function of
distance from the crack tip.

The steady-state concentration difference between the
tip and the mouth of the crack is obtained by setting x
equal to zero In equation (108) or (109-a). For a rectan-

gular crack, 1

- [= -ý 4- 0, + (I110-a)

For a pie-shaped crack,

ACj = (C- . -- I b) (110-b)

When the aspect ratio, (a/b), is much greater than one,
the relations expressed by equations (110) may be expressed Li
approximately by

where

a = a shape factor, and

1, for a rectangular region U

S= 2, for a pie-shaped region

L
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I Equation (111) is entirely consistent with the results
obtained numerically for transport by simple diffusion with

constant flux boundary conditions. The steady-state concen-
tration difference between the tip and the mouth of a crack

j] is directly proportional to the normal flux and to the square
of the crack length. It is inversely proportional to theU diffusion coefficient and the width at the mouth of the
crack. The constant c:, viewed as a shape factor, will have
a value between one and two for all crack geometries likely

-I to be found in nature.

U Boundary Conditions

[ While equation (111) adequately summarizes the results
obtained for simple diffusion with constant flux boundary

U conditions, it does not explain the behavior observed with
charge-transfer boundary conditions. (The important feature
of such a boundary specification is that the reaction rate,
or reaction current density, changes with changes in the
concentrations of the dissolved species. For the reaction
used in the z.urmrical calculations, the hydrogen ion was the
only dissolved species affectirng the reaction rate and its

Ii normal flux was directly proportional to the reaction current
density.) Since the hydrogen ion concentration was a func-
tion of distance from the crack tip, one would expect its

normal flux to likewise be a function of distance and this
was in fact observed. With the normal flvx varying from
point to point along the crack wall, one would further ex-
pect the shape of the concentration profile to differ from
that of a similar curve obtained using constant flux bound-
ary conditions. This was also observed, but the difference
was small (see Figure 18).

At thin point our concern is not with the validity of
the numerical results. The question is, do thnse results

I
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reflect the particular kinetic formulation used in that
work, or does the form of the boundary conditions generally

have a small effect on the shape of the concentration pro-
file? Here, as above, the one-dimensional transport analy-

sis developed in Appendix C is useful in framing an answer.
Consider a single dissolved species, Si, contained in a

rectangular crack and assume that transport is by simple I
diffusion. From equations (C-8 and -9) in Appendix C, the

steady state concentration is

ta

(cj-c ),-X) + ( ] (112)

where

Jt= normal flux of the ith species at the crack
tip (mole/cm2-sec)

Jiitx)= normal flux of the ith species along the crack
wall at a distance, x, from the crack tip

(mole/cm -sec)

= dummy variables

Note that both fluxes are positive when they correspond to

flows INTO the crack. Also, when the metal-electrolyte
interface is everywhere homogeneous, jt is equal to Jw(0).

The normal flux, Jw, may be treated two different ways.

It may be viewed either as an explicit function of the dis-

tance x or aE a fanctior of concentration (an implicit

function of x). Neither approach is completely satisfactory.
When the flux is treated as a function of concentration, it

is highly desirable (although, perhaps, riot absolutely
necessary) that the functional form used be consistent with

some charge-transfer kinetic relation. Normally then, the [
!
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first step is to specify a charge-trensfer reaction and

kinetic equation. Once this is done, the functional rela-

in tion between normal flux and concentration may be determined
and the result used with equation (112) to determine the

concentration. Unfortunately, it is usually not possible to

obtain a closed-form solution to the resulting integral equa-

[ tion, so our first objective, that of obtaining a simple but

completely general result, cannot be achieved in this nanner.

JNevertheless, a closed-form solution can be obtained for one

U important case and this is to be examined below, First, it

will be useful to consider the other alternative.

When the flux is treated as a function of &Istance,

evaluation of the integral on the right-hand side of equa-
tion (112) is straightforward and yields an explicit ex-

pression for the concentration. Such a formulation has the

] advantage of simplicity, but explains neither huw nor why
the flux actually varies under a given set of boundary con-

U ditions. However, it does provide a means for establishing

bounds on the effect of differences in the form of the flux

specification. Specifically, by treatin• the normal flux as

a function of distance, it is posslible to establish absolute
upper and lower bounds on the shape of the concentration pro-

[I file.
To establish bounds of this type it is not necessary to

U specify the form of Jý(x). It will be assumed, however, 'hat

i is expressible as an explicit fimction of x and is every-

where of the same sign as Jt Following notation introduced
Li above, the shape of the concentration profile may be conven-

iently iaracterized by the parameter C defined by equation

(101). Therefore, replacing Ci(x) in equation (101) by its
value in equation (112), the shape of the concentration pro-

Ii file is given by

-C XJ( +-. ý] 13

I
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where

(X d\i~ d C] (114-1)0

1* = I(0) (114-b)

Several features of equation (113) should be emphasized.

First, it may be F,een that I(x) is a monotonic function of

x and is bounded by
[[[-•)]Ii < iI~x! < I~l(114-c)

Also, since J. is everywhere of the same sign as J't I(x) is
monotonically increasing or decreasing according as Ji is

negative or positive. From this it follows that C". is char-

acteristically positive regardless of the sign of the flux,

that is, without regard to whether the normal flux is into or

out of the crack.
The bounds we seek are simply the upper and lower limits [

of the right-hard side of equation (113). For example, the

lower bound is approached as the integral I* becomes small.

That is,

LT 4 i = I -( (115)

ýO Ca,

The lower limit is approached, therefore, when the flux at

the crack tip is much greater than the flux at any point

along the crack wall. This behavior may be observed pi-ysi- [
cally when the composition of the metal at the crack tip is

.significantly different from the composition along the crack [
wall. * t

When the integral I beccmes large, or the flux J be-

comes small, a different behavior is observed. The limit as

I
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t becomes small is
i

L M)r, c• (Y)/,l,

The desired upper bound corresponds to the upper bound of

L I defined by equation (116-a). From the inequality

ID (114-c) it follows that

Lu = Max(Li) 116-b)

U The upper limit is approached when the flux near the mouth

of the crack is much greater than the flux at the crack tip

or other points along the crack wall. This behavior may be

observed ph1.sically when the concentration in the crack ap-

proaches its equilibrium value.

Therefore, when the normal flux is everywhere of the
same sign, the shape of the concentration profile lies be-

U tween the limits

L -o. , (117 )

In addition, the graph of the function Ci(x) is a continuous

curve and has a slope which is everywhere of the same sign.
Similar limits may be obtained for cracks having other

then a rectangular sh.ape. Such limits provide no detailed

view of the conditioms existing in cracks, but they serve

|I to emphasize that the concentration of a dissolved species

is of the same order of magnitude nearly everywhere within

a crack. In addition, these limits and the general form of

charge-transfer kinetic equations strongly suggest that the
normal flux is likewise, nearly everywhere, of the same

order of magnitude.

An indication of how the concentration actually varies

within the limits described by equation (117) can be obtained

I
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from the solution of equation (112) using a simple relation

between concentration and flux. First, however, it should

be noted that, for any charge-transfer reaction, the func-
tional relation between normal flux and concentration is

always expressible in the general form

Jit = c- (118) ['

The coefficients OQ and P1 may be functions of the potential

difference across the metal-electrolyte interface and the

concentrations of other dissolved species. The constant p

is typically a positive integer but can be any positive num-
ber. The general solution of equations (112) and (118) is 1'
beyond the scope of the present work. Here it is assumed LI
that CQ and Pi are functions only of the potential differ-

ence across the metal-electrolyte interface. Further, inI

order to display a closed-form solution, the constant p is
taken as one. For our purposes then, equation (118) may be L
written

= (C - ) (119)

where

Equation (119) represents a substantial simplification

of equation (118). Still, it provides an adequate descrip- L!

tion of a broad class of charge-transfer reactions. In this

class, for example, are many dissolution-precipitation re- U
actions. Before continuing, it may be useful to examine a

specific reaction in order to show the relationship between

equation (119) and the usual kinetic description of charge-

transfer reactions. This will also provide a basis for

evaluating the parameters • and A metal-ion dissolu- L

L
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I
tion reaction serves as a good example. Such a reaction may

be written

M M", + Z÷e- (120)

Equation (120) may be viewed as a specialization of

equation (40). For this reaction, the reduced species (M)

is insoluble and the charge-transfer valence is the same as

the charge (z+) on the oxidized species (Mz+, the metal ion).

Letting the subscript i represent the metal ion and follow-

ing the notation of Section II, the normal flux is

:-:1eXpi -(J- )-7 (121)

L where

S= ( 1 2 1 - a )

5ind

= standard exchange current density (amp/cm2 )

c• = charge-transfer coefficient

Cj = standard equilibrium concentration (mole/cm3 )

S= dimensionless potential of the metal

I• = dimensionless potential of the electrolyte at the

metal-electrolyte interface

I X = dimensionless standard electrode potential
By convention, the standard conditions are taken with C.B

equal to one mole per liter.

j By direct comparison of equation (119) and (121),

I
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-- t,.,' 1'YiZ (122-a)

-"@1•" (122-b)

The equilibrium concentration, Cq,. 1i. e. function of

the dimensionless overpotential. It increases as the ap-

plied potential increases. The slope, (3I, depends on both

the exchange current density and the equilibrium concentra-

tion. It increases as the exchange current density in-

creases and decreases as the equilibrium concentration in-

creases. From a comparison of equations (122-a) and (122-b),

it is clear that the slope, 1i, can be written as an explicit

function of the dimensionless overpotential. In many re-

spects such a form is preferable. However, the equation is

written the way it is to emphasize the relationship between

the slope and the equilibrium concentration.

When jn in equation (119) is used to express Jt and J w

in equation (112), it may be shown that the concentration is l

(Ci - CD) " (C'- 07) [. - COC.(C, +, (123)

U
where

N I•-7• 7 J~-(124-a)

~- .(124-b)
• ___ X,,Q"(124-c)

A simpler form may be used when the crack aspe'zt ratio [
is large.

I!
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(Ci-@i - - (C i-co)Li -1 (125)

SFor reasons of simplicity, equation (125) will be used

through the remainder of this discussion.U
To compare this result with those obtained earlier, it

is again convenient to use the function C, defined by equa-

tion (101). From equations (101) and (125),

U
- rcos'h(Xo - _ (1 26)[1 L co-'h(x) -

The behavior described by equation (126) is summarized

in Figure 35. The function Ci is shown for several values

of the parameter X. When N is less than one, the deviation

from the parabolic profile characteristic of constant flux

boundary conditions is small. An increase of X by one-and-

U one-half orders of magnitude results in a concentration

profile which is virtually flat over ninety percent of the

crack length. Only in a region close to the mouth of the

crack does the concentration differ significantly from the
value at the crack tip.

The normal flux can be determined from equations (119)

and (125). After introducing 3,, a non-dimensionalized

U flux, for later notational convenience, the result is

J - 7 (127)

The behavior of the normal flux is summarized in Figt're

1 36. The dimensionless flux, ' , is shown as a function of

I
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for the same values of X as those used in Figure 35. When N
is less than one-third, the normal flux is essentially con-

stant over the entire crack length. Increasing X by two
orders of magnitude reduces the normal flux to a value close
to zero over most of the crack length. Only in the region I
near the mouth of the cra ak is the flux appreciable. Com-

parison of Figures 35 and 36 shows that the change in the I
shape of the concentration profile from parabolic to flat is
associated with a change in the distribution of the normal

flux along the length of the crack.
The change from a parabolic to a flat concentration

profile occurs over a relatively narrow range of N values.
The reason for the change is shown in Figure 37. The lower

curve is a graph of the concentration ratio, Qi' as a func-
tion of X where Qi is defined as the ratio of the concentra-
tion difference between the tip and the mouth of the crackt
to the concentration difference at equilibrium. That is, I

____ FcoLt",;i_ i-i (128)

For small values of X, the concentration ratio, Qi' increases
as the square of N. As N approaches one, Qi begins to dev-
iate from the curve for small A values. For values of X I
greater than 10, Q is indepcindent of N and equal to one.

Therefore, che change from a parabolic to a flat concentra-
tion profile occurs when the concentration in the crack ap-
proaches its equilibrium value.

The practical significance of these results depends on

the range of N values likely to be encountered physically.
An estimate of this range can be constructed from estimates

of the parameters in equation (124-a). However, a more con-
venient form mty be obtained by replacing PL in equation
(124-a) by i-s value in equation (122-b) and setting the

I
I



I
-107-

charge-transfer coefficient equal to one-half. That is,

b _ 3 (129)

Values of the exchange current density, Is0 are typi-

cally of the order of 10- 9 to 10-3 amps per square centi-

meter. Ion diffusion coefficients are about 10-5 centi-

U meters squared per second at room temperature. The equi-
librium concentration may vary over a wide range depending

j •on the value of the overpotential, ", but the range, 10-9

to 10- moles per cubic centimeter, appears reasonable. The

0 crack dimensions may also vary over a wide range. However,

a crack length of one centimeter and a crack aspect ratio of

one hundred are typical. Faraday's constant is about 10+5

couilombs per equivalent. Ion valences are all of the order

of magnitude of one. By convention, the standard equilib-

I rium concentration is 10-3 moles per cubic centimeter.
Using these values in equation (129), the range of X values

is found to be 10-13 to 10+5.
A very small or very large value of N characterizes a

reaction which is displaced far from equilibrium. Very small
values correspond to large positive overpotentials and thus,

to large positive values of the normal flux, JýI Very large

values correspond to large negative overpotentials and thus,

to large negative values of Jn. For reactions close to equi-

librium, the value of ý, is typically in the range, 10-2 to
10.

H The limits, N equal to zero and / equal to infinity,

correspond respectively to positive and negative values of

U the normal flux. However, it should be cautioned that the

sign of the flux does not necessarily determine the shape of

the concentration profile. The sign of the flux is deter-
mined by the sign of (C~q - C0 ). That is, the flux is

1 1
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punitive or negative according as the equilibrium concentra- I
tion is greater than or less than the concentration in the

bulk electrolyte. On the other hand, the shape of the con-

centration profile depends only on the value of ?. That

value is in turn a function of t~q, but it is independent of f
the concentration in the bulk electrolyte.

Taken together, the above results indicate that treat-

ing the normal flux as a constant is an accurate approxima-

tion for a wide range of /values. More precisely, when

is less than or equal to one, the error introduced by using

a parabolic approximation to ý[ is everywhere less than one

percent. In terms of the kinetic parameters of equation

(121), the error in Ci is less than one percent when LI
3,p b(-•zz}> •.7- (130)

Of the results thus far, two are particularly striking.

The first is the bounds given by equation (117). The oecond

is the close conformity of the actual concentration profile

to the parabolic approximation over a wide range of >\values.

These results suggest that a satisfactory approximation to

the concentration in a crack-like region may be obtained from

an equation of the form of equation (118) or (119), and the

average concentration calculated from equation (108). For L
example, assuming that the crack aspect ratio is large and

treating jntretig i aa a constant, the average concentration, Cif
calculated from equation (108) is

ThLLd (131-a)[

Replacing Ci in equation (119) by Ci

-c ) (131-b)

I
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Equations (131) constitute a system of two equations in
two unknowns. Letting Ji be the value of Ji, which satisfies

equations (121), the solution of this system of equations is

"? + + 0 l (132-a)

I]
--- 

(132-b)BX

The procedure is essentially the same when the flux is
given by an equation of the form of equation (128). How-
ever, the system of equations will usually be larger and may
be non-linear.

The agreement between equation (132-a) and the average[] concentration from equation (125) is excellent. Equation
(132-a) is assymptotically correct for both small and large
;\values. The maximum error is about twelve percent at a
value of about four.

U In contrast, equation (132-b) is correct only for small
values of?\. Letting Ji be the average value of the normal
flux calculated from equations (119) and (125), the ratio,LI (Ji/ji), is

""N_ (133)

This flux ratio is shown as a function of )N by the upper
curve in Figure 37. For A values less than one the ratio
is essentially one. For larger N valueb, the ratio increases.

with increasing A-, so Ji underestimates the true average
value by increasingly greater amounts. This occurs because

ii the true value of the flux always remains .ifferent from
zero in a small region near the mouth of the crack. AC a

I
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result, the true value of the average flux approaches zero

more slowly with increasing ?\than does Ji.

Whether the discrepancy between Ji and Ji is significant

is a moot question. Because of the shape of the concentra-

tion profile for large values of A, the average flux, Jig I
provides a less accurate measure of the reaction rate in the

crack interior than does Ji. On the other hand, Ji provides

a poor estimate of the total mass flux entering or leaving

through the mouth of the crack.

This analysis is consistent with the numerical results

and places them in a broader perspective. It shows that the

concentration profile is nearly parabolic over a wide range

of conditions. Significant deviations from the parabolic

shape do occur for values of X greater than one, but for

values greater than thirty, the concentration profile is

virtually flat. Orly for ?\ in the range between one and

thirty does the shape of the concentration profile differ

significantly from one of the two limits, so the parameter I
X may be used as a quick and simple indicator of the shape
of the concentration profile. Finally, it has been shown f
that accurate estimates of the concentration and the flux in

the interior of a crack-like region may be ob-Gained from the

assumption that the normal flux is uniform. The accuracies

of these estimates are virtually independent of the actual

shape of the concentration profile.

The numerical results, the bounds summarized by equa-

tion (117), and the one-dimensional analysis presented above, I
form a coherent and fairly complete description of the inter-

action between normal flux and concentration in a crack-like I
region. The resultfi of the numerical calculations and those

of the one-dimensianal analysis provide specific examples of

how the normal .lux actually varies from point to point along

the crack wall depending on the reaction kinetics, the ap-

plied potential, and the composition of the bulk electrolyte.

I
I



W I sI N II

I
-111-

K Tbesq results indicate that the shape of the concentration

p rofile is very nearly parabolic over a wide range of con-

ditions. In addition, the results of the one-dimensional

eaalysis in general, and equation (127) in particular, em-

phasize that when the metal-electrolyte interface is homo-

geneous, the normal flux is everywhere of the same sign.

Finally, the results most important to an understanding of

transport in crack-like regions are the boLnds summarized
by equation (117). These bounds, together with the fact that

the concentration is a smooth, continuous function of dis-

tance, indicate why the form of the boundary conditions does

not have a strong influence on the shape of the concentration

profile. They also provide a theoretical basis for the use

U of approximations such as equations (132) to estimate the

composition within a crack-like region.

Convective Transport

The numerical work indicated that transport by diffuse.on

plays a dominant role in determining the concentration in a
crack-like region. Transport by convection and migration

appeared to have little effect on the results, ei.ther at

short times or long times. If this is generall•• i-!-, thý

complexity of many electrochemical transport probrems may be

U substantially reduced. If not, it may still be possible to

generate useful results using a diffusion analysis. In this

LI case, however, it will first be necessary to determine the

range over which the effects of migration and convection are

negligible and to estimate bounds on the errors introducel

when they are not.
The results of the las+ section indicate that convection

plays a minor role in the case of a hyperbolic crack sub-
Jected to the opening mode of crack deformation. That con-

Svective transport is almost -Lvays unimTportant may be shown

I
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from the une-dimensional transport analysis in Appendix C.

onsidar first the opening mcde of crack deformation and,

for simplicity, assume that the crack is rectangular. If

the crack walls move outward with a uriform velocity, U.,
the rectamgular region remains rectangular, and the average
longitudinal velocity, F, is

= -\--) (134)

where

b= bo + V't (135) L
and

bo = value of the crack width, b, at time zero (cm) [I

t = time •sec)

S= dimensionless distance from the crack tip (x/a)

Note that the average longitudinal velocity ,Z, is a linear

fiunction of distance from the crack tip. The same result is

obtained for the opening modc of defom.ation regardless of

the crack shape. [;

From equations (C-2 and -4) in Appendix C, the differ- L

ential equation, describint -nvective transport in a rectan-

gular crack is

3i 6J -b (136)

where

t= Di (137-a) I
S- / ..'D, (137-b)

I
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I' As the coefficient W'approaches zero, the convective

term approaches zero, and equation (136) approaches the

differential equation governing transport by simple diffu-

sion. When V* is greater than zero, omission of the con-

I vective term introduces an error. For example, when V* is

one-tentt, the orror introduced by neglecting the convective

term is about two percent; when V" is one, the error is

about fifteen percent. By comparison, the maximum value of

V*'in the convective-diffusion problems of the last section

was about seven. For that value of Z/ , the deviation of the1 solution from the solution for simple diffusion was about

twenty-five percent.

At short times, the concentration at the crack tip is

influenced only by conditions existing in a region close to

the tip. But, by equation (134), the velocity there is zero.
Therefore, equation (136) reduces to the equation describing

transport by simple diffusion and, at short times, the sol-1 11vent motion has no effect on the concentration at the crack

tip. This was observed in the results presented in the last

section.

U At large times, motion of the solvent affects the con-

centration everywhere within the crack. But, from the def-

initi of &'`and equations (134) and (135), it may be shown
that

(138)

H 1  In particular, for times of the order of the time to reach

tha steady state,

I ii'(139-a)

I
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and

Ilb - b.) j <(1 39-b),

Thus, for times of the order of the time to reach the steady

state, the error inttoduced by neglecting the convuctive

term is less than twenty percent. The error may be greater

than this at shorter times, but it is certainly less at

larger times. t

For technical alloys, the crack deformation rates which

can be sustained for extended periods of time are limited by

metal fracture. Thus, for problems of practical interest,

the crack deformation rates will be small and the errors

will be less than that corresponding to the absolute upper

boiund in equation (139-b). In this connection, it should be

emphasized that a V* value of seven was obtained in the nu-

merical calculations only by ignoring changes with time in

the crack dimensions.

For the mode of crack deformation we have called the

crack growth mode, the longitudinal solvent velocity is con-

stant along the length of the crack and the velocity profile C I
is approximately parabolic at every cross-section. As a re- I
sult, the velocity relative to the crack tip is zero, and,

according to the one-dimensional transport analysis, the L

governing differential equation reduces to that for trans-

port by simple diffusion. Thus, when the boundary condi- -
tions are expressed as functions of distance from the crack

tip (a moving coordinate), the analysis of problems involving E
the growth mode of crack deformation is identical to that for

transport by simple diffusion in a stationary crack.

The above results show that the convective term may be

omitted in almost all problems involving transport in a

crack-like region. For the opening mode of crack doformatic..,

I
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the error introduced by neglecting the convective term does

not exceed twenty percent for times greater than (a 2 /Di).

For the growth mode of crack deformation, no error is intro-

Sduced by neglecting convective transport relative to the

crack tip, since this contribution is in fact zero.

[] Migration

U The results of only one electrochemical transport prob-

lem were p-esented in the last section. Those results were

[J consistent with the view that diffusion is the dominant mode

of ion transport. However, none of the data presented indi-

cates the range over which this observation may be valid.

It is not clear, for example, that the diffusion equation
even constitutes a useful approximation outside the range of

very small current densities.

To evaluate the importance of transport by migration

iiand to understand the role of the electrostatic potential in

electrochemical transport requires a more detailed analysis.

U Once again, the one-dimensional transport analysis provides

a suitable framework. It has been possible to obtain a gen-

eral solution to a class of problems which includes the

problem solved numerically as a special case. A detailed
discussion of this solution is contained in Appendix D.

Because the solution is expressible in closed-form and i.
not too complicated, it is ideally suited to our present

U purposes.

It is assumed that the crack is rectangular and the

system is at steady state. Transport is by diffusion and

migration. The electrolyte contains three dissolved species

'with the charge numbers

1- + (140)

I _
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Species one and two will be called the salt ions and I
species three will be called the product ion. By analogy

with the problem solved numerically, the species one, two,
and three may be associated with the ions Na+, Cl-, and H+

respectively. The subscript notation is adopted here both

for convenience and to emphasize that the results are in no

way restricted to a particular electrolyte.

The boundary conditions are similar to those used in

the problem solved numerically. No restriction is imposed

on the normal flux of species three. The normal flux of

species one and two is taken as zero at every point along

the metal-electrolyte interface. In the notation introduced

above,

Jit - J( 0 o = i,Z (141)

From equations (D-6. -10, -11, and -12) in Appendix D,

the steady state solution is

c o= /•'U(x (142) h

(CT + C°'U'ý') (143)

C( (CO - CO"U(x) (144)

(145)

where L

UW - .t Y" (146)
b

DICV--- .•,; J b "J~a,• (147)1

S~II
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The correctness of this solution may be verified by direct

j substitution of equations (142 - 147) into the flux equation

and the electroneutrality equation (eqns. C-4 and -5 in3 Appendix C). Note that the dimensionless potential, 0, has

been set equal to zero at the mouth of the crack (x = a).
This has boon done for convenience and consistency with the

numerical work, since the absolute value of the potential has

no effect on the results.

Several features of the solution deserve special empha-

sis. The concentration of species one, the positive salt
Iion, is inversely proportional to the function u(x); the

concentration of species two, the negative salt ion, is di-
Srectly proportional to u(7). This suggests that the solu-

tion may be unbounded as u(x) approaches either zero or in-IIfinity. It may also be seen that the diffusion coefficients

of the salt ions do nct appear in the equations. In fact,
the steady state solution never includes the diffusion co-

efficient of a species whose flux is zero.
When the normal flux of species three is constant every-

jjwhere along the metal-electrolyte interface,

I• J, I a constant (148)

and equations (146) and (147) may be written

U() I+ __+ J13(o " YI (149)

I rLi l ll. (150)

I When the normal flux of species Three is constant, the

current density normal to the metal-electrolyte interface,

SIn is also constant aid may be written as

K,

I
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I
(151-a)

The current density in the longitudinal direction, Ii, is

S= L I+ (151-b)

I, is a linear function of distance from the crack tip.
When the crack aspect ratio is large, the current density
at the mouth of the crack may be one or more orders of mag-
nitude greater than Inn

From equations (145) and (149), the steady state value
of the potential difference between the tip and the mouth of L
the crack, Ak, is

-~I 4o + i L' + j (152)L

For comparison, the initial value of the potential [
difference, ACo, is

•i L

LL•1) zLi b + ; + - .1.b ( 1 5 3 )

where, in writing equation (153) it is assumed that the
initial composition of the electrolyte is everywhere con-
stant and equal to the composition of the bulk electrolyte.

For simplicity and clarity, we will focus attention on
the special case when jf is constant. Also, for the example

to bE presented, the transport properties, crack dimensions,
and boundary conditions will be the same as those used in the

electrochemical transport problem solved numerically. The

I
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normal current density, In, will be treated as the indepen-

dent variable. This specialization permits a direct compar-

ison with the numerical problem and provides a feel for mag-

fl nitudes not conveyed when results are presented in dimen-
sionless form.

Thus, the parameters of the solution will have the

111 following values unless otherwise stated.

L a = 0.200 cm

Sb = 0.020 cm

O = 0.6 x 10-3 mole/cm3

o 1.0 x 10-10 mole/cm3

D = 1.33 x 10-5 cm2 /sec

D = 2.00 x 1O•5 cm2/sec

D 3 = 9.00 x 10-5 cm2 /sec

i For the numerical problem, the normal current density,
I, was 314 microamps per square centimeter (jnwas 3.25 x
n_

10 moles per square centimeter per Econd). When I is

assigned this value and the other parameters are evaluated

I Has shown above, the agreement between this solution and the

numerical solution is excellent. When the appropriate quan-

tities are plotted in Figures 30, 32, 33, and 34, the points

are coincident with those shown for the numerical results,

with one exception. The current density versus distance

I curve does not show the deviation from linearity exhibited

by the numerical results.

I The behavior of this system over a broad range of cur-

rent densities is summarized in Figures 38, 39, and 40. In

I Figure 38, the crack-tip pH (defined here as the negative

common logarithm of C3 , evaluated at x equ:ý] t% zero) is

I
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shown as a function of the normal current density. The con-

centration of species three is calculated from equations

(144) and (149) using the values of the parameters given in

equations (154). The point on the curve corresponding to the

results of the numerical problem is shown by a solid circle.
The pH which would exist in the absence of a potential grad-

ient (transport by simple diffusion) is shown by a broken

line.

As the current density increases, the concentration in-

creases and the crack-tip pH decreases. When the current

density is small, the potential gradient ie rsall and the pH

is essentially the same as would be calculated ignoring the

effects of migration. Here, the two curves are coincident.

As the concentration approaches the value of the salt con-

centration in the bulk electrolyte (pH -r0), the potential 4

gradient begins to affect the solution and the curves sepa- I

rate. At high current densities, the curves become parallel.
At any given current density, the diffusion curve indicates
a pH value 0.301 less than the true value. Thus, the effect

of migration at high current densities is to reduce the pro-

duct ion concentration to a value one-half as large as that
predicted by diffusion alone. V

In Figure 39, the crack tip concentrations of all three

ions are shown as functions of the normal current density.

The concentrations are calculated from equations (142),
(143), (144), and (149) using the values of the parameters

in equations (154). The solid points indicate the results L
of the numerical problem.

When the current density is small, the concentration j
of the product ion is small compared to that of the positive

salt ion. In this range, the concentrations of the salt

ions are insensitive to the applied rurrert or the presence

of the product ion. The prodlic i .•,ehasves as though it

carried no charge. As the cu ,,- r:.,,..ity increases, the

I
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concentration of the product ion increases. When it reaches
j a value close to that of the salt in the bulk electrolyte,

there are sensible changes in the concentrations of the salt

ions. The electrolyte within the crack becomes enriched in

the negative salt ion and depleted in the positive salt ion.

This trend continues with further increases in the current

II density. At very large currents, the crack becomes severely

depleted in the positive salt ion. In this range, the be-

havior is, for all intents and purposes, the same as in a

bixiary electrolyte.

The behavior of the electrostatic potential is illus-

trated in Figure 40. The potential difference between the
tip and the mouth of the crack is shown as a function of the
applied current density. Two values are shown. The upper

V) curve is the initial value of the potential difference. It

|! was constructed using equation (153) and the data in equa-
tions (154). The lower curve is the steady state value. It

was obtained from equation (152), again using the data inI ] equations (154). The solid points indicate the results of
the numerical problem.

When the normal current density is small, both values

of the potential are proportional to the applied current,
but the steady state value is about one-fifth of the initial

value. As the current density increases, the initial value

remains proportional to the current. In contrast, the

steady state value is proportional to the current only with-
S~in a limited range. Beyond this range, the slope of the

poter.tipl-current curve decreases with increasing current.
At very large current densities the ratio of the steady

S~state potential to the initial pctential approaches zero.

"By comparison with Figure 39, iL may be seen that the cur-
rent density corresponding to the upper limit of the propor-
tional behavior is the same as that required to raise the

product ion concentration to the level of the salt concen-
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tration in the bulk electrolyte.

The example above illustrates most of the important

features of electrochemical transport. It shows the entire

range of behavior of the product ion, from simple diffusion

at low current densities to behavior as one of the ions in

a binary electrolyte at high current densities. It shows

the effects of the electroneutrality requirement by the

changes in the concentrations of the salt ions with changes

in the applied current. Most importantly, it shows how the

electrostatic potential changes with changes in the applied

current. Being a specific example, however, it illustrate&

these effects in relation to a specific set of boundary con-

ditions. It does not indicate the range over which the

effects may be observed, nor does it provide a truly satis-

factory basis for understanding them. For this, it is

necessary to return to the solution as expressed by equa- L
tions (142 through 145) and equation (149).

Consider first the bhoavior of the product ion when the L

normal current density is positive. Over most of the range

of positive current densities, the product ion behaves in one i
of two ways. Depending on the composition of the bulk elec-

trolyte, it may behave at low current densities as an un-

charged species, obeying the differential equation for trans-

port by ordinary diffusion. At sufficiently large corrent

densities, it always behaves as one species in a binary elec-

trolyte. (This may be shown to hold quite generally, with-

out regard for the number or charges of the other charged

species, as long as each of these species has a zero normal

flux.) The transition from one behavior to the other typi- [
cally occurs over a relatively narrow range of currez.t den-

sities.
All of this is readily apparent when equation (144) is

I
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written in the formI
A C CIO'- (155)

where

Sj- 2 n L ,(156-a)

and

- ~~+ (156-b)

Comparison of equations (156-a) and (110-a) shows that SC3

il is just the concentration difference between the tip and the
mouth of the crack that exists when the product species oar-

ries no charge. When f(OC3 ) is zero, the product ion behaves

U as an uncharged species. When it is large, the product ion
behaves as an ion in a binary electrolyte.

From equation (156-b), the function f(iC 3 ) is bounded by
the limits

0 .,, -- -.., (157 )

From these bounds and equation (155), it is clear that the

For notational convenience, equation (144) has been eval-
uated at x equal to zero, the crack tip. For a general
value of x, it is nccessary only to replace the right-hand
side of equation (156-a) by the right-hand side of equation
(108).I

I
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a&ctual concentration difference between the tip and the

mouth of the crack is never less than one-half, nor greater g
than ocie, times the concentration difference corresponding

to transport by dif.;. zion only. It is also apparent that

the product ion can actually behave as an uncharged species
only when its concentration in the bulk electrolyte is small

with respect to the concentration of the positive salt ion. [
The transition from one mode of behavior to the other

occurs within a relatively narrow range. Suppose, for ex- [
ample, that Co is much less than Co. In this case, the31
erro:- introduced by assuming that transport is by iffusion [
is less than ten percent when 6C3 is less than (4Co). On

the other hand, treating the electrolyte as a binary intro-

duces less than ten-percent error when bC3 is greater than

(16CO). So, the elect-rolyte musL Fkctually be treated as a
ternary system only over a range of about two orders of [
magnitude.

The behavior of the salt ions fX.XLCWs that of the pro- [
duct ion. When f(6C3 ) is small with respect to one, their

concentrations are essentially the same as those in the b-1k [
electrolyte. When f(SC3 ) is very close to one, the coiicen-
tration of the positive salt ion is near zero, while the con-

centration of the negative salt ion is approximately equal to

that of the product ion. Clearly, then, the value of the

function f(6C3 ) completely characterizes the 1,ehavior of the [
system when the current density is positive.

When the current density is negative, the behavior is [
different one important respect. Since negative concen-

trations are not physically allowable, there is a lower limit [
to the allowable values of the normal current density. In

the terminology of equations (155) and (156), SC3 is boiuded31from below. The value of this bound is obtained by cetting
03(0) equal to zero in equation (155). Thus

I
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I

& C. > -z(c +c~ )[1- '-(cT+-c) J (158)

I] From equations (156-b) and (158), it follows that for

negative vblues of the normal current density

Li0~ [i V1~ +cT1~ (Q (159)

LI Comparison of equations (157) and (159) shows that the func-

tion f(MC 3 ) is always non-negative and is bounded by the
limits zero and one. It provides the same characterization

of the system and is amenable to the same interrretation at
negative currents as at positive current *]ensities.

The normal current density corresponding to the limit-

ing value of 8C in equation (158) is called the limiting3
diffusion current densitj or, simply, the diffusion current
denaity. It may be determined from equations (151-a),

L(156-a), and (158). The values of the concentrations and the

electrostatic potential at the crack tip may be obtained from
I equations (142 through 145) and equation (149), again, using

the limiting value of SC from equation (158). The resu.ts

U are

I4= b (C1+ C[3) i 2 (160-a)

Cj(0) Z " U6 G Ca") (160-b)

(0, + C. (160-c)

0(
C•(O) -- ( 160-da)I
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L( ) ( 160-e)

The value of the diffusion current density in equation

(160-a) is consistent with simple dimensional arguments. It

inareases as the crack length decreases and as the ion con- 1
centration in the bulk electrolyte increases. The- concentra-

tions of the salt ions are equal and approach zero as the

salt concentration in the bulk electrolyte approaches zero.

The value of the electrostatic potential, which is equal to

the potential difference between the tip and the mouth of

the crack, approaches zero as the concentration of the pro-

duct ion in the bulk electrolyte approaches zero. This is

not surprising since the diffusion current density approaches

zero at the same time. As the concentration of the positive

salt ion approaches zero, the electrostatic potential at the

crack tip approaches minus infinity. The diffusion current[

density then approaches a valuc twice as large as the one

corresponding to transport by simple diffusion. [I
It shov~d be emphasized that the potential difference

between the tip and the mouth of the crack is unbounded only Ij
in the case of a binary electrolyte. The presence in the

bulk electrolyte of a third ion, having the same charge as

the product ion, eliminates the singularity at the crack tip.

However, this ion must be present in relatively large concen-

trations to have a practical effect. For example, when the

concentration of the positive salt ion, Co, in equation
(106-e) is equal to that of the product ion, C0, the poten-

tial difference corresponiing to the limiting diffusicn cur-

rent density is nine millivolts. When 00 is equal to 10-Co

the potential difference is 59 millivolts. When C, is eq~al

to 10iCO , the potential difference is 118 mill'volts. These

values should be compared to eighteen millivolts, the value

I'I
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of the potdntial difference when the normal current density

i a of the same magnitude, but of the opposite sign as the

diffusion current density in the binary system.

From the definition of conductivity following equation

(17), it is clear that small changes in composition produce

small changes in conductivity. The large potential changes

illustrated above suggest, therefore, that the steady state

potential does not satisfy Ohm's law at current densities

close to the diffusion current density.

The same conclusion, over a broad range of current

densities, is suggested by the results shown in Figure 40.

The steady-state potential difference was obtained from the

solution of the governing differential equations, assuming

that the time rates-of-change of the ion concentrations were

small with respect to the other terms in the equations. The
rI initial value was obtained from the same set of equations,

assuming this time that the electrolyte was homogeneous. As

indicated above, this is equivalent to the requirement that

the current and potential satisfy Ohm's law. While both

jacsumptirns are valid in their stated time domains, the Ohm's

law statement does not appear to be valid at steady state.

Since Ohm's law is often used in the solution of elec-

trochemical transport problems, it is worth considering

whether its use is ever justified. First, however, it will

be convenient to rewrite equations (152) and (153) in terms

of the parameter 8C3 defined by equation (156-a). From

equations (152) and (156-a), the steady-state potential dif-

ference between the tip and the mouth of the crack is

A0, I + C04- (161)

jJ Similarly, from equations (153) and (156-a), the initial

value is

!
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A0,(162) 1

The ratio of the two values proviles a simple measure

of the agreement between Ohm's law and the actual steady

state potential. For simplicity, we will consider only the

case when C3 is small with respect to C1 . In this case, the

bulk electrolyte is for all intents and purposes a binary

salt solution.

When the current density is small, the logarithm in

equation (161) may be approximated by its second term, and [
the ratio of the potential differences is

The ratio is one when the diffusion coefficient of the pro- [
duct ion is equal to the arithmetic average of the diffusion

coefficients of the salt ions. So, Ohm's law may yield a

satisfactory approximation to the steady state potential

when the diffusion coefficients are all about the same. Al-
though this condition was not satisfied in the example prob- i
lem, it often is satisfied for problems not involving either
the hydrogen or the hydroxyl ions.

At high current densities, the approximation based on

Ohm's law is never correct. It consistently overestimates

the true steady state potential by a significant margin.

This follows directly from equations (161) and (162). The

steady state potential increases as the logarithm of the

concentration ýC3; Ohm's law indicates that it should in-

crease linearly.

While Ohm's law may yield incorrect estimates of the

electrostatic potential, the major objection to its use is

[

[,



-129-

philosophical rather than practical. Its use carries the
1implication that migration is the primary mode of current

transport and that compositional differences between the

crack and the bulk electrolyte are negligible. In fact,
one-half or more of the total current is transported by dif-
fusion, and, as has been. shoum, the compositional differ-

11 ences this requires are often substantial.
When the ion with the non-zero flux has a negative

[1 charge, it is only necessary to replace u in equation (145)
by (1/u) and assign the opposite signs to the charge num-
bers in equation (140). This changes the sign of the re-
lation between the normal flux and the current density but

has no other effect. Therefore, the results presented here

apply to any 1-1-1 electrolyte for which the normal fluxes

of two species are zero. They may be conveniently summa-

rized as follows.

1) When it is assumed that transport is by simple diffu-
sion, the resulting estimate of the product ion concen-
tration is never in error by more than a factor of two.

2) An estimate of the error in the above approximation may

Ube obtair.ed from the ratio, Rc, of the calculated con-
centration to the total salt concentration in the bulk

U electrolyte. When the ratio is less than one-half, the
error is lecs than ten percent. When the ratio is
greater than twenty, the error is between 1.9 and 2,0.

In the latter case, the electrolyte essentially behaves
as a binary system, so the binary approximation will

Ii often be more useful in this range than the simple dif-
fusion analysis.

S3) The concentrations of the salt ions follow that of the

product ion. The crack is depleted in the s~at ion
carrying the same charge as the product ion, and concen-

I
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trated in the aalt ion carrying the opposite charge.

4) The potential is described by Ohm's law at times small

with respect to the diffusion time (a 2 /Di). The steady

state potential may be approximated using equation (161)
with bC3 replaced by its approximate value from the
diffusion analysis. If the concentration estimate is

corrected as indicated above, the expression for the

potential is exact. K
These results are consistent with those obtained numer-

ically. They indicate that the diffusion equation provides

a good estimate of the concentration of a product species.

When the requirements of electroneutrality are considered,

satisfactory approximations to the salt ion concentrations

may also be obtained.

Recapitulation

When the separate observations and findings of the last

two sections are viewed as a whole, they form a coherent and

fairly complete picture of corrosion and transport in crack-

like regions. They indicate that the average concentration

of an ion which enters into a surface reaction is, to a good

first approximation, given by

=C (164)

Thus, the factors which have a primary influence on the com-

position within a crack-like region are the average values

of the normal ion fluxes, the crack aspect ratio, and the

crack length. Other factors, such as the shape of the crack,

the exact form of the boundary conditions, and the transport j
mode, can and do affect the composition. In general, however, [I
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these factors are of lesser importance.

Operationally, the results suggest that first order
approximations to the ion concentrations may be obtained
using a method similar to that described by equations (132).

The accuracy of the resulting estimates may then be deter-

mined by comparing them with the ionic strength of the bulk
electrolyte. For moat problems it will be found that the
electrolyte can be treated either as an ordinary solution or

HI as a binary electrolyte. That fs, either the dissolved
species may be treated as having zero charge and the grad-
ient of the electrostatic potential ignored, or they may be
treated as charged species moving in the electrostatic field
cre..ted by the transport of the two principal ions.

Clearly, situations will arise for which neither of

these approximations is satisfactory. In such cases, it
will be necessary to use the more sophisticated solution
techniques developed in th1Is work. When two-dimensional

H transport effects are known or thought to be important the
numerical method is particularly well-suited. When the

1L boundary conditions are simple and the time-rate-of-change
of the electrolyte composition is small, the steady state
form of the one-dimensional transport analysis is preferred.

For problems involving time-dependence or complex bounaary
specifications, the numerical technique is the best of the
existing methods. However, a numerical method based on the
one-dimensional transport analysis would be simpler and more
efficient in the long run.

K

Ii



-132-

VII. CONCLUDING REMARKS I

The work presented here was originally aimed at devel- I
oping an analytic framework for the study of stress corro-
sion crackig. As the work progressed, it became clear that [
it would be necessary first to determine what factors most
strongly affect corrosion anrd transpcrt processes in cracks.
Only then would it be reasonable to undertake the modeling
of such a complex proceei as crack growth. While the results
do not go beyond that first stage, they do provide a basis
for a discussion of some general aspects of stress corrosion
cracking.

One of the longstanding rules of thumb in stress corro-
sion cracking is 'metals that corrode don't stress corrode'.
Like other such rales, it is not necessarily true, but it
points out that, by and large, alloys susceptible to crack-

ing in a particular environment do not actively corrode in
that environment. They typically have corrosion potentials
in the passive region, a range of potentials within which a
metal-oxide is stable in contact with water. When there is
an adequate oxygen supply, the oxide usually forms by reac-
tion of the metal with dissolved oxygen. When the oxygen
supply is limited, as is probable in a crack or crevice, the L
oxide forms either by hydrolysis of metal ions or by direct
reaction of the metal with water. Regardless of the reaction
path, the formation of a metal-oxide in the absence of free
oxygen is accompanied by the release of hydrogen ions.

If the electrolyte within a crack is depleted in oxygen,
the pH should be in the acid range. Evidence presented in
two recent papers, one by B. F. Brown, C. T. Fujii, and E. P.
Dahlberg [3] and the other by J. A. Smith, M. H. Peterson,

See the footnote at the bottom of page 134. [
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and B. F. Brown [24], indi.cates that this is, in fact, the

Scase. Their data show that for cracks in a variety of ma-
terials the pH is in the range between about 1.5 and 3.5.

i In general, the data indicate that the greater the oxide
stability, the lower the measured pH.

These pH measurements may be used with the results of
the last section to obtain some general estimates of the

conditions in stress corrosion cracks. For example, equa-

l] tion (164) can be used to estimate the normal current den-
sity at the metal-electrolyte interface due to oxide film
growth. Consider a crack 1-millimeter long by 0.01-milli-
meter wide and suppose that the bulk electrolyte is a neu-

tral, 0.6-mole per liter, sodium-chloride solution. Us-ig

9 x 10-5 centimeters squared per second as the value of the
hydrogen ion diffusion coefficient, the average value of the

Li normal current density is in the range 3 x 10-7 to 3 x 10-5

amperes per square ceatimeter.
[j If the rate of f~lm growth changes significantly from

point to point along the crack wall, the average normal
current density is not a good indicator of the local reac-
tion rate. If, as appears likely, the rate at the crack tip

is much greater than at points more distant, the current den-

sity in that region will be about two crders of magnitude
greater than the average calculated above. Whatever the
case, the current density at the mouth of the crack is in
the range 3 x 10-5 to 3 x 10-3 amperes per square centimeter.

SThere is little published data regardinr the Concentra-

tions of ions other than the hydrogen ion. Measurements re-
Sported in Reference 3 indicate the presence of metal ions

but provide no estimates of their concentrations. From the
reported pH values and the solubility products of the various
metal hydroxides, however, it appears that the metal Ion con-

centrations are small and that the hydrogen ion is the

I=
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principal product ion.

As shown in the last section, the importance of migra-

tion may be estimated from the rElIo of the product ion con-
centration in the crack to the ionic strength of the bulk
electrolyte. From the measurements reported in Reference 3, I
the minimum pH was about 1.5, corresponding to a hydrogen

ion concentration of about 0.03 moles per liter. The ionic
strength of the electrolyte (0.6-mole per liter, sodium-

chloride solution) was about 1.2 moles per liter. The ratio
of the two is forty. Thus, the effects of migration and the
gradient of the electrostatic potential should be negligible L
over most of the crack length. It is interesting to note
that in T. R. Beck's original 'MKT' analysis [10], the same
result was obtained. A large potential gradient in the re- L
gion close to the crack tip was later generated by introduc-
ing a diffusion-limited chloride ion flux.

The results presented in the last two sections are based
on a planar analysis and are strictly valid only when trans-

port in the specimen thickness direction is negligible. In
most experimental work no attempt is made to control trans-
port in this direction. A planar analysis should neverthe-

less yield results consistent with experiment when the spec-
imen thickness is large with respect to the crack length. L

When the thickness is small, the analysis will fail..

In practice, a planar analysis should be approximately L
correct for points closer to the crack tip than about one-
half the specimen width. At points more distant, composition
variations in the specimen thickness direction will be much
greater than those in ;`e crack length direction. Corrosion

*The system examined in Reference 24 is an exception to L
this rule. The metal (AISI 4340 steel) may crack at active
corrosion potentials. Although the crack is acidified by
what appears to be a hydrolysis rsaction, the hydrclyzed
species is soluble.

I-I
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processes on the crack faces will then be 'ittle different

from those on the sides of the specimen. Therefore, finite-

width specimens should behave as if the crack length were

constant whenever the crack length is greater than about

one-half the specimen width.
This view is consistent with the outstanding success

[ obtained in correlating susceptibility to cracking and crack

growth rates with applied stress intensity. For pre-cracked

Sspecimens of a fixed alloy composition, tested under constant

conditions in a given electrolyte, there appears to be a
critical stress intensity, KISCC, below which cracks do not

Li propagate. This critical-value is independent of the crack

length or the Decimen configuration [25]. In the last sec-

I Lj tion it was -3ho.-t that convective transport is signiiicant

only at very high loading rates. In the usual range of load-

* ing rates, the major effect of the applied stress on ion

transport is its effect on the crack aspect ratio. For a

pre-cra~ked specimen such as that shown in Figure 24, the

crack aspect ratio depends on its value under no load and

the stress intensity. By using a fatigue crack as a starter

notch, the crack aspect ratio at zero load is effectively

standardized, and the aspect ratio becomes a function of the
U stress intensity only. Therefore, if the crack length to

specimen width ratio is ir. the range where the 'effective'

H, cratk length remains constant, the effect of the stress field
on ion transport is determined by the applied stress inten-

Lil sity and the variables describing the crack geometry do notL

behave as independent variables.

These remarks are not meant to imply that the stress

field has no influence other than its influence on ion trans-

port. The applied stress intensity has a strong inrfluenne on
fracture surface morphology and may affect the kinetics of

H charge-transfer reactions. The fact that the stress inton-
L sity influences all these factors is one of the more serious

II
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obstacles to determination of the underlying mechanisms of I
cracking.

The need for accurate kinetic data has been stressed
throughout this work. Qualitative observations and order of
magnitude estimates such as those presented above provide
some insight into the stress corrosion process. But these
are really not adequate for understaiding or controlling [
stress corrosion cracking and, if history is a useful guide,
they are just as likely to be wrong as right.

Consider some of the interpretations made of the ob-
served low values of the crack pH. This observation has
been. viewed as providing support for at least three differ-
ent mechanisms for crack growthi. While it would be unfair
and misleading to imply that these proposals are based on no
other experimental data, a low pH is a critical factor in
each of them.

T. P. Hoar [26] has argued that a 7ow pH inside the
crack is consistent with a metal-dissclution mechanism.
Under such circumstances, the rate of oxiue-film formation
should be suppressed and consequently the rate of metal dis-
solution highly favored rear the crack tip. Others argue I

that a low pH should accelerate the rate of hydrogen ion

discharge un the bare retel surface at the crack tip, and
that fracture mr:st thrn Le the consequence of hydrogen em-
brittlement (see Reference 27). Still others find support
for a film rupture mchanisma. lere it is argued that the
low pH confirmE the hypothesis that oxide film growth is the
primary reaction occurring in cracks. If this is the case,
rupture of the film under applied stress may then cause the
crack to propagate a short diptance into the metal until it L

again comes to rest and the process repeats itself.
Obviously a low pH value neither confirms nor refutez

any of these theories. Together with other drta, the mea--
suremert8 reported in Reference 3 do imply that hydrogen [

[
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ions are generated either by the hydrolysis of metal ions or

Sby oxide film growth. Whether this reaction is even critical

to crack propagation remains to be determined. For many sys-

tems, a low crack pH is expected simply from the exposure of

clean and highly reactive metal surfare to an oxygen depleted

ii electrolyte. When this is the case, a low pH could be the

consequence of crack growth and not the underlying cause of

it.

[ii Regardless of the actual mechanism of crack growth, it

is clear that all require a fine balance between the rates

of several different reactions. For example, if crack prop-

agation is due to hydrogen embrittlement in a near neutral
11 electrolyte, there must first be a source of hydrogen ions.

The rate of generation of these ions must be approximately

U equal to their rate of discharge on the metal surface. The

rate of hydrogen absorption must be fast with respect to the
rate of formation of molecular hydrogen and its rate of

transport away from the crack tip. Finally, the rate of

metal dissolution must be slow with respect to the rate of

[} hydrogen absorption.

Because there is qualitative agreement between the ex-

perimental data and several different failure mechanisms, it
is not possible to determine the actual mechanism in a given

system by a single simple experiment. In order to subject

any of the mechanistic theories of stress corrosion to a

critical test, at least three elements will be required.

First, the mechanism must be cast in a quantitative form.

This will probably require independent evaluation of quali-

U tative relationships which have not yet been quantified. In
the case of hydrogen embrittlement, for example, the rela-

H tionship between KiC, the critical stress intensity for rapid

fracture, and the concentration of occluded hydrogen is re-

quired. Next, accurate and independently measured electro-

chemical kinetic data must be obtained. Using this data,

!
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the analytic techniques presented here may be used to char-

acterize the environment and to determine whether the actual I
reaction rates are consistent with the mechanism postulated.
Finally, the quantitative predictions generated in this way

must be subjected to rigorous experimental verification.

L
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ConclusionsI
1) A method has been developed for the numerical solution

of the electrochemical transport equations based on
dilute solution theory and subject to an arbitrary set

of charge-transfer boundary conditions. It has been

applied to problems involving dependence on time and
Ll two spatial variablis.

2) The factors of primary mportance in determining the

electrolyte compofition within a crack-like region are

the average values of the species fluxes normal to the
solid-liquid interface, the crack length, and the cracka[ aspect ratio. Other factors, such as the crack shape,
the form of the boundary conditions, and the transport

H mode can affect the composition. However, these fac-
tors are of lesser importance.

[J 3) When the crack aspect ratio is greater than three and
the elapsed time is greater than the diffusion time

11 (a 2 /D), the effects of transport in the transverse
crack direction are negligible.

S4) The average concentration of an ion within a crack-like
region is given to a good first approximation by equa-
tion (164).

The accuracy of this approximation may be determined
from the ratio of the calculated value to the ionic

j strength of the bulk electrolyte.

5) As shown by equation (164), the electrolyte composition

within a crack may differ substantially from that in

!
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the bulk solution.

6) An accurate representation of reaction kinetics is

required to determine the detailed behavior of an

electro.yte within a crack-like region.

7) Many individual results have been presented which can-

not be conveniently summarized but have direct appli-

cation to pitting corrosion, crevice corrosion, and

stress corrosion cracking.

I,

if

I.
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Recommendations and Future Work

1) For application to stress corrosion cracking, pitting

corrosion and crevice corrosion, a method should be

developed for the numerical solution of the one-dimen-

sional formulation of the transport equations presented

in Appendix C. This should permit improved resolution

in regions with large gradients and result in at least

San order of magnitude reduction in core storage re-

quirements and computation time.

[ 2) The methods and results developed in this study should

be applied to the study of stress corrosion cracking.

Particular emphasis should be placed on the identifi-

cation of allowable reactions in the system under in-
vestigation and on a determination of the kinetics of

these reactions.

I 3) The many individual results presented here provide

tools for the study of such corrosion phenomena as

pitting, crevice corrosion, and intergranular corrosion.

Application o-' these resL~ts to such corrosicn processesu should be undertaken.

U
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I iAPPENDIX A

Finite-Difference Analogue for the Ion Conservation Equation

NA key element in the numerical solution if the electro-

chemical transport equations is the method used to solve the

ion conservation equation, equation (73) on page 38. In the

notation of equations (77), the equation may be written

Y(t =Lj(Cfý + -V~q* + V'4(A-1)

In the computer program developed for this study, equa-
tion (A-I) is solved using an Alternating-Direction Implicit

(ADI) technique. The term ADI describes a general concept

or approach rather than a particular algorithm. It may be
applied to any algorithm using a computational sequence in

<I which the equations are first made implicit in one coordin-

ate direction and then in another. Such methods have the

I advantages of unconditional stability and computational

speed. This appendix is included to show how this concept

has been applied to the solution of equation (A-I).

g Let

I ,, •t' (A-2)

I where f is any function of the coordinates a and t. Then

by analogy with differential operators, we may define the

j following difference operators&

i
i

I
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Asi(ijkI) (AC-3)

L? (j, k,l " "1)•jkl9) - ~ '.,.] (A-4)

L'Q S(J -?,(k'..u (A-5 )SI+

, Z (,j,k,9.)" Q(,k-i , (A-6 )

X-(i,k . - (,k - ] (A-7)

The central-difference operatorA defined by equations
(A-3 through A-6) are second-oraer correct. That is, the
error introduced by using the difference operator to approx-
imate the analogous differential operator is proportional to
&• (or &7'). The backward-difference operator defined by
equation (A-7) is first-order correct.

The finite-.ifference analogue to equation (A-I) is
written as two equations. In the first, derivatives of
concentration in the E-direction arc approximated at (1+1)at,

while those in the "?-direction are approximated at Iht. In
the second, the sequence is reversed and the calculation is
advanced another half time-step. Derivatives of concentra-
tion in the Y-direction are approximated at (i +)&t and de-

rivatives in the en-direction are approximated at (U+ •)&t.

There are several ways to treat the products of the deriva-

tives of C'L and 4. In the present version of the program,
these are approximated at (1+j)tt .

I
I
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The difference equations areI
Mj,k~jtC(jk,kj4) Edc4C(j'kj+') Dý? (A-8)

l2

+~~~ + 2Q. ~ 1

Y(2 ,cAItC(ik ) QT'(iQk,+) + D917C k, 4J) (A-9)

*11 \•( + A .kS,1,,(j, k)

II ~~+ *jjk,~- k Y{jkG(k) 0""' .

where

(zt o~(~. ~ Ck~.~,~--L~p~ (A-jo)
+ C , ., , • ~ >.

I ± t,.:!k•••..(~ ,•' + t•..•,,.), (j ,.'

+ j•,., -,

I
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I
G(,,,• ZLG(,,' 4 (~ ,J,, (A-11)

Note that in writing equations (A-8 through A-I1) the species 3
subscript i has been omitted and the stream function has been
written as a time invariant quantity. This was done for sim- 3
plicity. Values of the functions cý and G at the advanced

time are obtained by iteration as explained in the text. [
The net effect of alternately applying equations (A-8)

and (A-9) can be seen from the sum of the two equations.

-) r ~ ~ ~ ~ Ij t

[
-' C A1( ,% (S, , 'i'(•,kN (A-12)

.+i t [~&%P~~k

The term on the left-hand side is just the central dif-

ference approximation for the partial time derivative of C

at time . It is analogous to equations (A-3) and

(A-4) and may be shown to be second-order correct. There-
fore, equation (A-12) is second-order correct in both time

and space when oý and (3' are correctly evaluated at time I
(S+{)j . When the functions aý and G are evaluated at time

ht, the equation remains second-order correct in space but I
is reduced to first-order correctness in time.

I
I
I
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APPENDIX B

Reaction Kinetics

I Before the techniques developed here can be applied in

the study of a particular system, one must first decide what

reactions are relevant to the behavior of that system, and

then obtain quantitative expressions for the rates of those

I reactions. For example, having determined that a redox re-

action of the form of equation (40) is important, one must

f decide whether an equation of the form of equation (59) is

euitable for expressing its reaction kinetics. If so, the

parameters If and 01 must be evaluated. If not, another ex-

pression must be found and its parameters evaluated. The

same thing applies to the other reactions in the system.

For the work presented here, it was decided to select
a simple system of reactions which would exhibit a fairly

'3 wide range of behavior without being excessively complicated.

It was also desired that the system of reactions be one for

which some, if not all, of the kinetic constants could be

evaluated from published data.

jJ A system of reactions modeled after the oxide-film

formation reactions in the titanium-water system met these

requirements. A key factor in this choice was that the

oxides of titanium have an extremely low electronic conduc-
tivity. Virtually all of the current passing through the

J film must be transported by ions or vacancies rather than by

electrons. In the limit of zero electronic conductivity, no

redox reaction can occur on an oxide-covered metal surface,

since the electrons generated cannot pass through the film.

j In this case, the only allowable reactions are oxide film

growth by ion or vacancy migration through the film, and

ion-exchange reactions at the oxide-electrolyte interface.

By further limiting the ion-exchange reactions to a single

I
!
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dissolution-precipitation reaction, a relatively simple

system of reactions is obtained which nevertheless retains

some physical relevance.

The reactions considered, therefore, may be written

M + 2H 2 0 MO2 + 4H+ + 4e- (B-I)

MO2 + 2H+' MO2+ + H2 0 (B-2) [

Reaction (B-i) may be viewed as an overall reaction

consisting of three steps.

M(metal) • M4 +(oxide) + 4e- [II (B-3a)

migration of ions or vacancies [II (B-3b)

through oxide film

2[H2 0 • 02 -(oxide) + 2H+(elect)] [212] (B-3o)

Steps (B-3a) and (B-3c) are charge-transfer reactions. Step

(B-3b) is a transport requirement imposed by the finite

thickness of the oxide film. The current density correspond-

ing to each step is shown in brackets for later reference.

If no other reaction occurs, stoichiometry of the oxide re-

quires that the current density 12 be one-half I.V

Reaction (B-2) may be viewed as consisting of two

partial reactions. [

MO2 +(oxide) • M02 +(elect) [13] (B-4a) i
I
I
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02 -(oxide) + 2H+(elect) - H2 0 [-12] (B-4b)

Reactions (B-4) are bo-h charge-transfer reactions occurring
at the oxide-electrolyte interface. Reactions (B-4b) and

ft (B-3c) are identical but are written in the opposite direc-

tions. Again the current density corresponding to each re-

action is shown in brackets. When reaction (B-2) is the

1 l only reaction, stoichiometry of the oxide requires that 12

equal minus 13I!3J
The overall system of two reactions consists of three

1] partial reactions. The requirement of stoichiometry may be

written as

Ii - I I is 0 (B-5)

To obtain a complete description of the reaction kinet-

ics it is necessary to express the current densities, I1,

I2, and I3, as functions of concentration and potential.

U Following Vetter [5] it is assumed that reaction (B-3a) is
near equilibrium and transient transport effects in the

JJ oxide film are ignored. The current density I, may then be

expressed using the high field conduction equation. The

[1 current densities are

I ) - C•Y"" (B-6)

- -?C72]IH! (B-7)

10 - 2 X (B-8)
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Equations (B-5 through B-8) provide the complete ki-

netic description of reactions (B-I) and (B-2). Because

the solution of these equations for ?s is lengthy and in-

volved and a parametric analysis of the equations indicated

that 13 is small over a wide range of pH and potential, it
was decided to treat reaction (B-2) as being close to equi-

librium. Equation (99) in the text is the result of this

assumption. A simple algorithm for obtaining 15 from this

system of equations has since been developed, so a simpli- [
fying assumption of the kind used here need not be invoked

in future work.

Once Ys has been determined, the ion fluxes and oxide-

film growth-rate may be expressed as

J(Hi2.rL 11 -9a)~

J(MO ) : - ,L (B-9b) L
(B-9- 15 AC)L

L

E

[

I
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APPENDIX C

Electrochemical Transport in a Crack-Like Region

When the aspect ratio of a notch or crack is large, the

effects of transport in the transverse direction can be ne-

glected and the region treated as a one-dimensional contin-

uum. The equations describing transport in such a region

are developed in this appendix and the solutions for two im-

portant cases are presented. A solution technique based on

LI developing an integral equation for the electrostatic poten-

tial is also discussed. An example of the use of this tech.-

nique is presented in Appendix D.

Consider a region in the x-y plane bounded by the

Li x-axis and the line y = f(x) as shown in Figure 41. The

region corresponds to one-half the section of a crack pro-

duced by a cutting-plane perpendicular to both the crack

plane and the crack front. The x-axis coincides with the

crack centerline; the line y = f(x) coincides with one crack

face. The region is assumed to be symmetric about the crack

centerline so the second crack face corresponds to the line

y =-f(x). For the control volume shown in Figure 41, the

equation of mass conservation may be written

'U
Lo(C-1)

U Taking the limit of equation (C-I) as At and At approach

zero, the differential form of the mass conservation equa-

U tion is

!i
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-! +

where [
. ("-2a)I

When the mouth of the crack is located at x equal to a, and
b is the crack half-width measured at the crack mouth,

rI,t: . (C-3a)L

for a rectangular crack and L
=Y + (C-3b)

for a pie-shaped crack. Note that the fluxes J and Jin

equation (C-2) are flux densities and not total fluxes.

Also, the quantities appearing in the equation correspond
to average values across the crack width.

To complete the description, the flux equation and the
electroneutrality equatio.. are required. L

J4 T- - +I~~ (C-4)

Vl
-- ~(C-5)

When the average solvent velocity, V/, has been determined,

equations (C-2, -4, and -5) represent the complete system I
of equations describing mass transport in a crack-like
region. I

I
!I
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When the line y = f(x) is the generator of a surface of

revolution about the x-axis rather than a sheet, the enclosed

region is pit-like rather than crack-like. Using the same

procedure as that used to obtain equation (C-2), the conser-

vation equation for such a region is

H
S- + U1 0 (C-6)

When equation (C-6) is used instead of equation (C-2), theI results are modified in detail but not in principle. There-

fore, it will not be considered further.

]i At steady state, integration of the conservation equa-
tion is straightforward. Since the boundary conditions typi-

Scally require specifying the flux at the crack tip and the
concentration at the crack mouth, it is convenient to express

the result as

L (J½')(P'. + -Jj (C-7)

LI where the crack tip is lceated at x equal to p and the prime

denotes differentiation with respect to the argument of a

U function.

As indicated in the text, there are two important limits

to the behavior of an electrolyte. The first is when the

total normal current density is small. The ions then behave

as uncharged species obeying the equation of transport by

simple diffusion. The second is when the current density is

large. The concentrations of the two principal ions closely

approximate those of the ions -,n a binary electrolyte. The

potential gradient is determined by the need to satisfy both

the boundary conditions of the principal ions and the elec-

troneutrality equation. Th• concentrations of the minor

(I
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ionic species are strongly affected by the potential gradient

but they themselves have virtually no effect on it.

Consider the case of steady-state transport by simple

diffusion. From equations (C-4) and (C-7) with 4 and

equal to zero

=' = 1

or

C = CIO + (C-8)

where __(-

The solution is almost as simple for the case of steady-

state transport in a binary e. ctrolyte. From equations

(C-4) and (C-7) with Y equal to zero

+ (C-lOb)

where f1 end f 2 are defined according to equation (C-9).

Adding equations (C-10) and using the electroneutrality

equation to eliminate both the electrostatic potential and

02, it follows that [

-(C ~ 1 F(Y,) + [1
or
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ICIL
+ C' +F ~ iSs+ ~(-

!x

The concentration C2 may be obtained from equation (C-11)
by simply interchanging the subscripts one and two.

When the normal flux of one of the two species, say
species two, is everywhere zero, it follows from equation

(0-9) that f 2 is also zero. Since the ith diffusion co-
efficient enters the result only through fig it is clear

Sthat the solution docs not depend on the diffusion coeffi-

cient of a species with zero flux. Comparing equations
(C-8) and (C-11) with f 2 equal to zero, it may be seen that

-1- .,n._ (0-12)
TiCl - C* ,,t " - .: - .'

For the problem presented in the text this ratio was one-
half. It will typically lie between one-quarter and three-
quarters.

The electrostatic potential may be obtained from equa-
U tions (C-10a) and (C-11). However, we will use a different

method in order to show how an integral representation may

j be used to solve (.ertain electrochemical transport problems.
Consider a steady state system for which the so2vent

velocity is zero. From equations (C-4, -7, and -9), the

differential equation governing ion transport may be written

in the form

SIntegrating,

I
I
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+ (C-1 4)

where, for convenience, 0(a) has been set equal to zero.

Note that, as before, the kernel 1 contains all the in-

formation regarding the normal flux and the crack shape. I
When the potential, (t, is everywhere zero, equation (0-8)

is recovered. When • is known or otherwise specified, as I"
for a minor ionic species in a near.-binary electrolyte,

equation (C-14) expresses the solution and no additional 1.
information is required.

In general, the electrostatic potential is not known

and the electroneutrality eqition must be used. Thus, from

equations (C-5) and (C-14),

+ t ,. o (C-15)

Every steady-state one-dimensional electrochemical L
transport problem is re0Lcible to the problem of finding a

value of • that satisfies equation (C-15). In practice,
there are two ways to do this. The first is direct numeri-

cal solution of the integral equation. The second is,

through repeated differentiation, to derive an equivalent

differential equation. It may be possible to solve this

equation analytically. Otherwise, it can be solved numeri-

cally.
The derivation of an equivalent differential equation [

is straightfcrward but laborious. For example, in the case

of a binary electrolyte, equation (c-15) may be written L

( -16+ )

(0-16)
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wheref 11W (C-1 7)

Differentiating once and rearranging,

1.1J 1[~ + 4-Sz ý'Z I ~zL- ZZ c- ZZ 4(~rZ -'Z ZF)IF) 0
UX[] (0-18)

Differentiating again and rearranging yields the desired

fl differential equation.

Ii [(?& + z�Y� I +

[1 Integration of equation (0-19) is straightforward.

After evaluating the constants of integration using equa-

tions (C-17) and (C-18), it follows that

,=i rK ' '- . (C-20)

[ The correctness of this result may be verified by com-

parison with the result obtained directly from equations

(C-I0a) and (C-11). The labor involved does not justify
I U using equation (C-15) for a binary system. For more corm-

l jplex electrolytes, however, there is no other straightforward
method for solving the steady-state transport equations, and

a method based on the solution of equation (C.-15) is neces-

sary whether it is recognizable as such or not.

\i
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APPENDIX D I

Electrochemical Transport in a 1-1-i Ternas-y Electrolyte

Determination of the implicit function () defined by I
equation (C-15) in Appendix C is the key step in solving

one-dimensional steady-state electrochemical transport prob-

lems. Since the equation is non-lin6ar, it usually is im-

possible to obtain a solution in closed-form and approximate [
methods must be used. In several cases, however, closed-

form solutions can be displayed and one of these is presented

in this appendix.

Consider a 1-1-1 ternary electrolyte for which the nor-

mal flux of one species ia everywhere zero. In the termi-

nology of Appendix C

(D-la)

and

= 0 (P-i b)

With these values, equation (C-i5) can be written in L
the form [

O•-- C° U• U- •'' "=

,` + 0 + (D-2)

where u(x) is defined according to equation (C-17). Differ-

entiating once and rearrangingi L
[,- "•] jU" - 2CU - '- 0 (D-3) [

i1'
! r
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I Differentiating and rearranging again, the desired differ-

ential equation is obtained.

U + + 0 (D-4)

By the definition of u(x) and equation (D-3),

I (o) OOxp[4Xo.)] = I (D-5a)

Uýo.) Z/g( -(D-5b)i
Therefore, integrating equation (D-4) twice and using equa-

I tions (D-5), it follows that
0.

\n I C . 2 ? (D-6)
) ( 7)] C,

The ion concentrations may be determined from equation

ii (D-6) and equation (0-14). For example, for species two

IL = +ýji , Lýoý (D-7)

I
To carry out the integration, it is convenient to define a

I new variable. Note that equation (D-6) may be written in

the formI _

ý. z(r') -, - L

t zCI*1  N_(7) + imc~

I
SII
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or

fr~ ~rL 2 ~) +S]e (D-8)I

where I
_ (D-9)

Using equations (D-8) and (D-9), equation (D-7) becomes

or

0Z = ji+ (D-10) I

Since f 1 (x) was assumed to be zero,

0 ,,. : •, ,, , (D-11)

and by electroneutrality

C = C,- C, (D-12) E
I

Equations (D-6, -10, -11, end -12) express the general

solution for a 1-1-1 ternary electrolyte for which one of the

positively charged species has zero normal flux. Note that

for a 1-1-1 ternary containing two negatively charged ions

I I
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and one positively charged .<,'n and for which one of the
fi negative ions has zero normal f.ux, the same solution is

obtained except that 4) is the negative of the value given
by equation (D-6). Also, the signs of the charge numbers

must then be taken opposite to those shown in equation

(D-ia).

U
U

U

U
U

iLl
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